initial files
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 2.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 2.9b23
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
from tqdm.auto import tqdm
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
#import streamlit as st
|
8 |
+
from huggingface_hub import HfApi, hf_hub_download
|
9 |
+
from huggingface_hub.repocard import metadata_load
|
10 |
+
#import streamlit.components.v1 as components
|
11 |
+
|
12 |
+
# Based on Omar Sanseviero work
|
13 |
+
# Make model clickable link
|
14 |
+
def make_clickable_model(model_name):
|
15 |
+
link = "https://huggingface.co/" + model_name
|
16 |
+
return f'<a target="_blank" href="{link}">{model_name}</a>'
|
17 |
+
|
18 |
+
# Make user clickable link
|
19 |
+
def make_clickable_user(user_id):
|
20 |
+
link = "https://huggingface.co/" + user_id
|
21 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
22 |
+
|
23 |
+
def get_model_ids(rl_env):
|
24 |
+
api = HfApi()
|
25 |
+
models = api.list_models(filter=rl_env)
|
26 |
+
model_ids = [x.modelId for x in models]
|
27 |
+
return model_ids
|
28 |
+
|
29 |
+
def get_metadata(model_id):
|
30 |
+
try:
|
31 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
32 |
+
return metadata_load(readme_path)
|
33 |
+
except requests.exceptions.HTTPError:
|
34 |
+
# 404 README.md not found
|
35 |
+
return None
|
36 |
+
|
37 |
+
def parse_metrics_accuracy(meta):
|
38 |
+
if "model-index" not in meta:
|
39 |
+
return None
|
40 |
+
result = meta["model-index"][0]["results"]
|
41 |
+
metrics = result[0]["metrics"]
|
42 |
+
accuracy = metrics[0]["value"]
|
43 |
+
print("ACCURACY", accuracy)
|
44 |
+
return accuracy
|
45 |
+
|
46 |
+
# We keep the worst case episode
|
47 |
+
def parse_rewards(accuracy):
|
48 |
+
if accuracy != None:
|
49 |
+
parsed = accuracy.split(' +/- ')
|
50 |
+
mean_reward = float(parsed[0])
|
51 |
+
std_reward = float(parsed[1])
|
52 |
+
else:
|
53 |
+
mean_reward = -1000
|
54 |
+
std_reward = -1000
|
55 |
+
return mean_reward, std_reward
|
56 |
+
|
57 |
+
def get_data(rl_env):
|
58 |
+
data = []
|
59 |
+
model_ids = get_model_ids(rl_env)
|
60 |
+
for model_id in tqdm(model_ids):
|
61 |
+
meta = get_metadata(model_id)
|
62 |
+
if meta is None:
|
63 |
+
continue
|
64 |
+
user_id = model_id.split('/')[0]
|
65 |
+
row = {}
|
66 |
+
row["User"] = user_id
|
67 |
+
row["Model"] = model_id
|
68 |
+
accuracy = parse_metrics_accuracy(meta)
|
69 |
+
print("RETURNED ACCURACY", accuracy)
|
70 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
71 |
+
print("MEAN REWARD", mean_reward)
|
72 |
+
row["Results"] = mean_reward - std_reward
|
73 |
+
row["Mean Reward"] = mean_reward
|
74 |
+
row["Std Reward"] = std_reward
|
75 |
+
data.append(row)
|
76 |
+
return pd.DataFrame.from_records(data)
|
77 |
+
|
78 |
+
|
79 |
+
def get_data_per_env(rl_env):
|
80 |
+
dataframe = get_data(rl_env)
|
81 |
+
dataframe = dataframe.fillna("")
|
82 |
+
|
83 |
+
#import pdb; pdb.set_trace()
|
84 |
+
if not dataframe.empty:
|
85 |
+
# turn the model ids into clickable links
|
86 |
+
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
87 |
+
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
88 |
+
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
89 |
+
table_html = dataframe.to_html(escape=False, index=False)
|
90 |
+
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
91 |
+
return table_html,dataframe,dataframe.empty
|
92 |
+
else:
|
93 |
+
html = """<div style="color: green">
|
94 |
+
<p> β Please wait. Results will be out soon... </p>
|
95 |
+
</div>
|
96 |
+
"""
|
97 |
+
return html,dataframe,dataframe.empty
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
RL_ENVS = ['CarRacing-v0','MountainCar-v0','LunarLander-v2']
|
102 |
+
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing π Leaderboard π",'data':get_data_per_env('CarRacing-v0')},
|
103 |
+
'MountainCar-v0':{'title':"The Mountain Car π Leaderboard π",'data':get_data_per_env('MountainCar-v0')},
|
104 |
+
'LunarLander-v2':{'title':" The Lunar Lander π Leaderboard π",'data':get_data_per_env('LunarLander-v2')}
|
105 |
+
}
|
106 |
+
|
107 |
+
|
108 |
+
block = gr.Blocks()
|
109 |
+
with block:
|
110 |
+
|
111 |
+
with gr.Tabs():
|
112 |
+
for rl_env in RL_ENVS:
|
113 |
+
with gr.TabItem(rl_env):
|
114 |
+
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
115 |
+
|
116 |
+
markdown = """
|
117 |
+
# {name_leaderboard}
|
118 |
+
|
119 |
+
This is a leaderboard of {len_dataframe}** agents playing {env_name} π©βπ.
|
120 |
+
|
121 |
+
We use lower bound result to sort the models: mean_reward - std_reward.
|
122 |
+
|
123 |
+
You can click on the model's name to be redirected to its model card which includes documentation.
|
124 |
+
|
125 |
+
You want to try your model? Read this Unit 1 of Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md.
|
126 |
+
|
127 |
+
""".format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title'])
|
128 |
+
gr.Markdown(markdown)
|
129 |
+
gr.HTML(data_html)
|
130 |
+
|
131 |
+
|
132 |
+
block.launch()
|