deepdoctection / app.py
JaMe76's picture
Update app.py
317c295
raw
history blame
9.41 kB
import os
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
from os import getcwd, path, environ
import deepdoctection as dd
from deepdoctection.dataflow.serialize import DataFromList
import gradio as gr
_DD_ONE = "conf_dd_one.yaml"
_DETECTIONS = ["table", "ocr"]
dd.ModelCatalog.register("layout/model_final_inf_only.pt",dd.ModelProfile(
name="layout/model_final_inf_only.pt",
description="Detectron2 layout detection model trained on private datasets",
config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274632215],
tp_model=False,
hf_repo_id=environ.get("HF_REPO"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.LayoutType.text,
"2": dd.LayoutType.title,
"3": dd.LayoutType.list,
"4": dd.LayoutType.table,
"5": dd.LayoutType.figure},
))
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input
# updates
cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE))
cfg.freeze(freezed=False)
cfg.DEVICE = "cpu"
cfg.freeze()
# layout detector
layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT)
layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT)
categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories
assert categories_layout is not None
assert layout_weights_path is not None
d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE)
# cell detector
cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL)
cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL)
categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories
assert categories_cell is not None
d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE)
# row/column detector
item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM)
item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM)
categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories
assert categories_item is not None
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE)
# word detector
det = dd.DoctrTextlineDetector()
# text recognizer
rec = dd.DoctrTextRecognizer()
def build_gradio_analyzer(table, table_ref, ocr):
"""Building the Detectron2/DocTr analyzer based on the given config"""
cfg.freeze(freezed=False)
cfg.TAB = table
cfg.TAB_REF = table_ref
cfg.OCR = ocr
cfg.freeze()
pipe_component_list = []
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True)
pipe_component_list.append(layout)
if cfg.TAB:
cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, True)
pipe_component_list.append(cell)
item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, True)
pipe_component_list.append(item)
table_segmentation = dd.TableSegmentationService(
cfg.SEGMENTATION.ASSIGNMENT_RULE,
cfg.SEGMENTATION.IOU_THRESHOLD_ROWS
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
else cfg.SEGMENTATION.IOA_THRESHOLD_ROWS,
cfg.SEGMENTATION.IOU_THRESHOLD_COLS
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
else cfg.SEGMENTATION.IOA_THRESHOLD_COLS,
cfg.SEGMENTATION.FULL_TABLE_TILING,
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS,
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS,
)
pipe_component_list.append(table_segmentation)
if cfg.TAB_REF:
table_segmentation_refinement = dd.TableSegmentationRefinementService()
pipe_component_list.append(table_segmentation_refinement)
if cfg.OCR:
d_layout_text = dd.ImageLayoutService(det, to_image=True, crop_image=True)
pipe_component_list.append(d_layout_text)
d_text = dd.TextExtractionService(rec, extract_from_roi="WORD")
pipe_component_list.append(d_text)
match = dd.MatchingService(
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES,
child_categories=dd.LayoutType.word,
matching_rule=cfg.WORD_MATCHING.RULE,
threshold=cfg.WORD_MATCHING.IOU_THRESHOLD
if cfg.WORD_MATCHING.RULE in ["iou"]
else cfg.WORD_MATCHING.IOA_THRESHOLD,
)
pipe_component_list.append(match)
order = dd.TextOrderService(
text_container=dd.LayoutType.word,
floating_text_block_names=[dd.LayoutType.title, dd.LayoutType.text, dd.LayoutType.list],
text_block_names=[
dd.LayoutType.title,
dd.LayoutType.text,
dd.LayoutType.list,
dd.LayoutType.cell,
dd.CellType.header,
dd.CellType.body,
],
)
pipe_component_list.append(order)
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list)
return pipe
def prepare_output(dp, add_table, add_ocr):
out = dp.as_dict()
out.pop("image")
layout_items = dp.items
if add_ocr:
layout_items.sort(key=lambda x: x.reading_order)
layout_items_str = ""
for item in layout_items:
layout_items_str += f"\n {item.layout_type}: {item.text}"
if add_table:
html_list = [table.html for table in dp.tables]
if html_list:
html = html_list[0]
else:
html = None
else:
html = None
return dp.viz(show_table_structure=False), layout_items_str, html, out
def analyze_image(img, pdf, attributes):
# creating an image object and passing to the analyzer by using dataflows
add_table = _DETECTIONS[0] in attributes
add_ocr = _DETECTIONS[1] in attributes
analyzer = build_gradio_analyzer(add_table, add_table, add_ocr)
if img is not None:
image = dd.Image(file_name="input.png", location="")
image.image = img[:, :, ::-1]
df = DataFromList(lst=[image])
df = analyzer.analyze(dataset_dataflow=df)
elif pdf:
df = analyzer.analyze(path=pdf.name, max_datapoints=3)
else:
raise ValueError
df.reset_state()
df_iter = iter(df)
dp = next(df_iter)
return prepare_output(dp, add_table, add_ocr)
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Box():
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>")
gr.Markdown("<strong>deep</strong>doctection is a Python library that orchestrates document extraction"
" and document layout analysis tasks using deep learning models. It does not implement models"
" but enables you to build pipelines using highly acknowledged libraries for object detection,"
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating"
" and running models.\n This pipeline consists of a stack of models powered by <strong>Detectron2"
"</strong> for layout analysis and table recognition and <strong>DocTr</strong> for OCR.")
with gr.Box():
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>")
with gr.Row():
with gr.Column():
with gr.Tab("Image upload"):
with gr.Column():
inputs = gr.Image(type='numpy', label="Original Image")
with gr.Tab("PDF upload (only first image will be processed)"):
with gr.Column():
inputs_pdf = gr.File(label="PDF")
with gr.Column():
gr.Examples(
examples=[path.join(getcwd(), "sample_1.jpg"), path.join(getcwd(), "sample_2.png")],
inputs = inputs)
with gr.Row():
tok_input = gr.CheckboxGroup(
_DETECTIONS, value=_DETECTIONS, label="Additional extractions", interactive=True)
with gr.Row():
btn = gr.Button("Run model", variant="primary")
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown("<h2><center>Text output</center></h2>")
gr.Markdown("Will only show contiguous text from text blocks, titles and lists")
image_text = gr.Textbox()
gr.Markdown("<h2><center>First table</center></h2>")
html = gr.HTML()
gr.Markdown("<h2><center>JSON output</center></h2>")
json = gr.JSON()
with gr.Column():
gr.Markdown("<h2><center>Layout detection</center></h2>")
image_output = gr.Image(type="numpy", label="Output Image")
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, tok_input], outputs=[image_output, image_text, html, json])
demo.launch()