Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') | |
from os import getcwd, path, environ | |
import deepdoctection as dd | |
from deepdoctection.dataflow.serialize import DataFromList | |
import gradio as gr | |
_DD_ONE = "conf_dd_one.yaml" | |
_DETECTIONS = ["table", "ocr"] | |
dd.ModelCatalog.register("layout/model_final_inf_only.pt",dd.ModelProfile( | |
name="layout/model_final_inf_only.pt", | |
description="Detectron2 layout detection model trained on private datasets", | |
config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml", | |
size=[274632215], | |
tp_model=False, | |
hf_repo_id=environ.get("HF_REPO"), | |
hf_model_name="model_final_inf_only.pt", | |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"], | |
categories={"1": dd.LayoutType.text, | |
"2": dd.LayoutType.title, | |
"3": dd.LayoutType.list, | |
"4": dd.LayoutType.table, | |
"5": dd.LayoutType.figure}, | |
)) | |
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input | |
# updates | |
cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE)) | |
cfg.freeze(freezed=False) | |
cfg.DEVICE = "cpu" | |
cfg.freeze() | |
# layout detector | |
layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT) | |
layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT) | |
categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories | |
assert categories_layout is not None | |
assert layout_weights_path is not None | |
d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE) | |
# cell detector | |
cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL) | |
cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL) | |
categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories | |
assert categories_cell is not None | |
d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE) | |
# row/column detector | |
item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM) | |
item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM) | |
categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories | |
assert categories_item is not None | |
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE) | |
# word detector | |
det = dd.DoctrTextlineDetector() | |
# text recognizer | |
rec = dd.DoctrTextRecognizer() | |
def build_gradio_analyzer(table, table_ref, ocr): | |
"""Building the Detectron2/DocTr analyzer based on the given config""" | |
cfg.freeze(freezed=False) | |
cfg.TAB = table | |
cfg.TAB_REF = table_ref | |
cfg.OCR = ocr | |
cfg.freeze() | |
pipe_component_list = [] | |
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True) | |
pipe_component_list.append(layout) | |
if cfg.TAB: | |
cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, True) | |
pipe_component_list.append(cell) | |
item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, True) | |
pipe_component_list.append(item) | |
table_segmentation = dd.TableSegmentationService( | |
cfg.SEGMENTATION.ASSIGNMENT_RULE, | |
cfg.SEGMENTATION.IOU_THRESHOLD_ROWS | |
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"] | |
else cfg.SEGMENTATION.IOA_THRESHOLD_ROWS, | |
cfg.SEGMENTATION.IOU_THRESHOLD_COLS | |
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"] | |
else cfg.SEGMENTATION.IOA_THRESHOLD_COLS, | |
cfg.SEGMENTATION.FULL_TABLE_TILING, | |
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS, | |
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS, | |
) | |
pipe_component_list.append(table_segmentation) | |
if cfg.TAB_REF: | |
table_segmentation_refinement = dd.TableSegmentationRefinementService() | |
pipe_component_list.append(table_segmentation_refinement) | |
if cfg.OCR: | |
d_layout_text = dd.ImageLayoutService(det, to_image=True, crop_image=True) | |
pipe_component_list.append(d_layout_text) | |
d_text = dd.TextExtractionService(rec, extract_from_roi="WORD") | |
pipe_component_list.append(d_text) | |
match = dd.MatchingService( | |
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES, | |
child_categories=dd.LayoutType.word, | |
matching_rule=cfg.WORD_MATCHING.RULE, | |
threshold=cfg.WORD_MATCHING.IOU_THRESHOLD | |
if cfg.WORD_MATCHING.RULE in ["iou"] | |
else cfg.WORD_MATCHING.IOA_THRESHOLD, | |
) | |
pipe_component_list.append(match) | |
order = dd.TextOrderService( | |
text_container=dd.LayoutType.word, | |
floating_text_block_names=[dd.LayoutType.title, dd.LayoutType.text, dd.LayoutType.list], | |
text_block_names=[ | |
dd.LayoutType.title, | |
dd.LayoutType.text, | |
dd.LayoutType.list, | |
dd.LayoutType.cell, | |
dd.CellType.header, | |
dd.CellType.body, | |
], | |
) | |
pipe_component_list.append(order) | |
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list) | |
return pipe | |
def prepare_output(dp, add_table, add_ocr): | |
out = dp.as_dict() | |
out.pop("image") | |
layout_items = dp.items | |
if add_ocr: | |
layout_items.sort(key=lambda x: x.reading_order) | |
layout_items_str = "" | |
for item in layout_items: | |
layout_items_str += f"\n {item.layout_type}: {item.text}" | |
if add_table: | |
html_list = [table.html for table in dp.tables] | |
if html_list: | |
html = html_list[0] | |
else: | |
html = None | |
else: | |
html = None | |
return dp.viz(show_table_structure=False), layout_items_str, html, out | |
def analyze_image(img, pdf, attributes): | |
# creating an image object and passing to the analyzer by using dataflows | |
add_table = _DETECTIONS[0] in attributes | |
add_ocr = _DETECTIONS[1] in attributes | |
analyzer = build_gradio_analyzer(add_table, add_table, add_ocr) | |
if img is not None: | |
image = dd.Image(file_name="input.png", location="") | |
image.image = img[:, :, ::-1] | |
df = DataFromList(lst=[image]) | |
df = analyzer.analyze(dataset_dataflow=df) | |
elif pdf: | |
df = analyzer.analyze(path=pdf.name, max_datapoints=3) | |
else: | |
raise ValueError | |
df.reset_state() | |
df_iter = iter(df) | |
dp = next(df_iter) | |
return prepare_output(dp, add_table, add_ocr) | |
demo = gr.Blocks(css="scrollbar.css") | |
with demo: | |
with gr.Box(): | |
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>") | |
gr.Markdown("<strong>deep</strong>doctection is a Python library that orchestrates document extraction" | |
" and document layout analysis tasks using deep learning models. It does not implement models" | |
" but enables you to build pipelines using highly acknowledged libraries for object detection," | |
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating" | |
" and running models.\n This pipeline consists of a stack of models powered by <strong>Detectron2" | |
"</strong> for layout analysis and table recognition and <strong>DocTr</strong> for OCR.") | |
with gr.Box(): | |
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Image upload"): | |
with gr.Column(): | |
inputs = gr.Image(type='numpy', label="Original Image") | |
with gr.Tab("PDF upload (only first image will be processed)"): | |
with gr.Column(): | |
inputs_pdf = gr.File(label="PDF") | |
with gr.Column(): | |
gr.Examples( | |
examples=[path.join(getcwd(), "sample_1.jpg"), path.join(getcwd(), "sample_2.png")], | |
inputs = inputs) | |
with gr.Row(): | |
tok_input = gr.CheckboxGroup( | |
_DETECTIONS, value=_DETECTIONS, label="Additional extractions", interactive=True) | |
with gr.Row(): | |
btn = gr.Button("Run model", variant="primary") | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("<h2><center>Text output</center></h2>") | |
gr.Markdown("Will only show contiguous text from text blocks, titles and lists") | |
image_text = gr.Textbox() | |
gr.Markdown("<h2><center>First table</center></h2>") | |
html = gr.HTML() | |
gr.Markdown("<h2><center>JSON output</center></h2>") | |
json = gr.JSON() | |
with gr.Column(): | |
gr.Markdown("<h2><center>Layout detection</center></h2>") | |
image_output = gr.Image(type="numpy", label="Output Image") | |
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, tok_input], outputs=[image_output, image_text, html, json]) | |
demo.launch() |