|
# EGNet |
|
EGNet:Edge Guidance Network for Salient Object Detection (ICCV 2019) |
|
|
|
We use the sal2edge.m to generate the edge label for training. |
|
### For training: |
|
1. Clone this code by `git clone https://github.com/JXingZhao/EGNet.git --recursive`, assume your source code directory is`$EGNet`; |
|
|
|
2. Download [training data](https://pan.baidu.com/s/1LaQoNRS8-11V7grAfFiHCg) (fsex) ([google drive](https://drive.google.com/open?id=1wduPbFMkxB_3W72LvJckD7N0hWbXsKsj)); |
|
|
|
3. Download [initial model](https://pan.baidu.com/s/1dD2JOY_FBSLzjp5tUPBDBQ) (8ir7) ([google_drive](https://drive.google.com/open?id=1q7FtHWoarRzGNQQXTn9t7QSR8jJL8vk6)); |
|
|
|
4. Change the image path and intial model path in run.py and dataset.py; |
|
|
|
5. Start to train with `python3 run.py --mode train`. |
|
|
|
### For testing: |
|
1. Download [pretrained model](https://pan.baidu.com/s/1s35ZyGDSNVzVIeVd7Aot0Q) (2cf5) ([google drive](https://drive.google.com/open?id=17Ffc6V5EiujtcFKupsJXhtlQ3cLK5OGp)); |
|
|
|
2. Change the test image path in dataset.py |
|
|
|
3. Generate saliency maps for SOD dataset by `python3 run.py --mode test --sal_mode s`, PASCALS by `python3 run.py --mode test --sal_mode p` and so on; |
|
|
|
4. Testing code we use is the public open source code. (https://github.com/Andrew-Qibin/SalMetric) |
|
|
|
|
|
|
|
### Pretrained models, datasets and results: |
|
| [Page](https://mmcheng.net/jxzhao/) | |
|
| [Training Set](https://pan.baidu.com/s/1LaQoNRS8-11V7grAfFiHCg) (fsex) ([google drive](https://drive.google.com/open?id=1wduPbFMkxB_3W72LvJckD7N0hWbXsKsj)) | |
|
| [Pretrained models](https://pan.baidu.com/s/1s35ZyGDSNVzVIeVd7Aot0Q) (2cf5) | |
|
| [Saliency maps](https://pan.baidu.com/s/1M_dqPJ08oaYWge_zZnHSTQ) (54gi) ([google drive VGG](https://drive.google.com/open?id=1WEuEqNmqMePyxD8anGo0KA4rWK9Nyb9I)) ([google drive resnet](https://drive.google.com/open?id=1h5R8tT3Jq_2S3pLfXREpuWaKvFphQ4K9)) | |
|
|
|
|
|
### If you think this work is helpful, please cite |
|
```latex |
|
@inproceedings{zhao2019EGNet, |
|
title={EGNet:Edge Guidance Network for Salient Object Detection}, |
|
author={Zhao, Jia-Xing and Liu, Jiang-Jiang and Fan, Deng-Ping and Cao, Yang and Yang, Jufeng and Cheng, Ming-Ming}, |
|
booktitle={The IEEE International Conference on Computer Vision (ICCV)}, |
|
month={Oct}, |
|
year={2019}, |
|
} |
|
``` |
|
|
|
### Other related work |
|
Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection. (CVPR2019) [page](https://mmcheng.net/rgbdsalpyr/) |
|
|
|
|
|
|
|
|