gpt2 / app.py
hf-dongpyo's picture
Update app.py
55d9dd6
raw
history blame contribute delete
983 Bytes
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import gradio as grad
mdl = GPT2LMHeadModel.from_pretrained('gpt2')
gpt2_tkn = GPT2Tokenizer.from_pretrained('gpt2')
def generate(starting_text):
tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
gpt2_tensors = mdl.generate(tkn_ids,
max_length = 100,
no_repeat_ngram_size = True,
num_beams = 3,
do_sample = True,
temperature = 1.5)
response = ""
# response = gpt2_tensors
for i, x in enumerate(gpt2_tensors):
response += f"{i}: {gpt2_tkn.decode(x, skip_special_tokens = True)}"
return response
txt = grad.Textbox(lines = 1, label = 'English', placeholder = 'English Text Here')
out = grad.Textbox(lines = 1, label = 'Generated Tensors')
grad.Interface(
generate,
inputs = txt,
outputs = out
).launch()