from transformers import GPT2LMHeadModel, GPT2Tokenizer import gradio as grad mdl = GPT2LMHeadModel.from_pretrained('gpt2') gpt2_tkn = GPT2Tokenizer.from_pretrained('gpt2') def generate(starting_text): tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt') gpt2_tensors = mdl.generate(tkn_ids, max_length = 100, no_repeat_ngram_size = True, num_beams = 3, do_sample = True, temperature = 1.5) response = "" # response = gpt2_tensors for i, x in enumerate(gpt2_tensors): response += f"{i}: {gpt2_tkn.decode(x, skip_special_tokens = True)}" return response txt = grad.Textbox(lines = 1, label = 'English', placeholder = 'English Text Here') out = grad.Textbox(lines = 1, label = 'Generated Tensors') grad.Interface( generate, inputs = txt, outputs = out ).launch()