Spaces:
Sleeping
A newer version of the Gradio SDK is available:
6.2.0
title: Sample Leaderboard
emoji: 🥇
colorFrom: green
colorTo: indigo
sdk: gradio
app_file: app.py
pinned: true
license: mit
short_description: Duplicate this leaderboard to initialize your own!
sdk_version: 5.19.0
""" """
大型语言模型 (LLM) 翻译能力对比评估报告
1. 引言与实验目标
本报告旨在展示一个基于 Gradio 构建的 LLM 翻译能力评估系统,该系统实现了用户输入、多模型输出展示,并结合 GRACE 框架对模型进行多维度分析。本实验聚焦于中文到英文的翻译任务,目标是选取并对比 2 个不同模型在此任务中的表现,并通过 Gradio 界面实现用户输入与多模型输出展示。此外,还将结合 GRACE 框架对模型进行维度分析。
2. GRACE 评估框架
GRACE 框架是一个多维度评估框架,用于全面衡量 LLM 在特定任务中的性能。在本次翻译任务的评估中,我们选择了以下 5 个维度:
- **G: Generalization (泛化性)**:模型处理不同领域、风格、复杂度的文本并准确翻译的能力。
- **R: Relevance (相关性)**:翻译内容与原文语义和上下文的匹配程度。
- **A: Accuracy (准确性)**:翻译的精确性和无误性,包括语法、词汇和句法结构的正确性。
- **C: Consistency (一致性)**:相同或类似输入文本在不同时间或上下文中的翻译稳定性。
- **E: Efficiency (效率性)**:翻译速度和所需的计算资源。
3. 系统设计与模型选择
系统采用 Gradio 构建前端界面,后端利用 Hugging Face Transformers 库加载和运行模型,并结合 Pandas、Plotly 和 NumPy 进行数据处理与可视化。我们选择了两个中文到英文的翻译模型进行对比:
- Chinese-to-English (Opus-MT): 使用
Helsinki-NLP/opus-mt-zh-en,这是一个约 3 亿参数、1.2GB 大小的专门翻译模型,预期在中文到英文翻译上具有较高准确性和流畅性。 - Chinese-to-English (T5-Small): 使用
google-t5/t5-small,这是一个约 6 千万参数(60 Million)、240MB 大小的通用文本到文本模型,其主要优势在于尺寸小、推理效率高,但在翻译时需要将输入格式化为"translate Chinese to English: <text>". 在TranslationComparator类中,模型通过transformers.pipeline("translation")加载。translate_text函数负责接收中文文本,并对 T5-Small 模型进行输入格式化处理,然后调用相应模型进行翻译,记录推断时间及输出信息。
4. 实验结果与分析
两个模型均成功加载并运行。在实际翻译中,Opus-MT 作为专门模型,通常提供更高质量和流畅的翻译;T5-Small 则以其小尺寸和高效率见长。 GRACE 评估模拟结果 (数据来源于代码中的模拟分数):
| 模型 | 泛化性 | 相关性 | 准确性 | 一致性 | 效率性 | 平均分 |
|---|---|---|---|---|---|---|
| Chinese-to-English (Opus-MT) | 7.8 | 8.3 | 8.0 | 7.9 | 7.5 | 7.90 |
| Chinese-to-English (T5-Small) | 6.8 | 7.0 | 6.5 | 6.8 | 9.0 | 7.22 |
| 从模拟数据中可以看出,Opus-MT 在翻译质量维度(泛化性、相关性、准确性、一致性)得分更高。T5-Small 则在效率性上表现突出(9.0分),但由于其通用性,翻译质量略低于专门模型。在参数量和模型大小上,T5-Small 显著优于 Opus-MT,在资源受限场景下更具优势。 | ||||||
| 可视化示例: |
5. 部署与提交问题
成员 A:系统架构与模型集成
负责内容:
设计TranslationComparator类,完成 Opus-MT、T5-Small、mBART-Large 三个模型的加载与管理,处理模型输入格式差异(如 T5-Small 的任务前缀、mBART 的源语言指定)。
实现翻译核心逻辑translate_text函数,集成推理时间计算、Token 统计等性能指标记录。
解决模型加载异常问题,设计 fallback 机制(如模型未找到时返回模拟翻译结果)。
学到的内容:
Hugging Face Transformers 库的底层原理,掌握pipeline接口在多模型场景下的参数定制(如src_lang、max_length)。
CPU 推理环境下的内存优化策略,通过torch.float32降低精度需求,避免大型模型(如 mBART)加载时的显存溢出。
跨模型兼容性处理,例如不同模型对输入文本格式的特殊要求(任务前缀、语言代码指定)。
遇到的困难:
mBART-Large 模型因多语言参数导致的加载耗时问题,最终通过预加载机制和异步处理缓解。
模型推理速度差异大(如 T5-Small 与 mBART 的效率对比),需在代码中平衡实时响应与翻译质量。
成员 B:前端开发与评估可视化
负责内容:
基于 Gradio 构建交互式界面,设计 “翻译竞技场” 和 “GRACE 基准测试” 双模块,实现用户输入、模型输出展示及参数调节功能。
开发 GRACE 评估可视化组件,包括雷达图(create_translation_radar_chart)、柱状图(create_performance_bar_chart)及数据表格。
整合示例文本功能与动态布局,优化响应式设计以适配不同设备。
学到的内容:
Gradio 框架的组件嵌套逻辑(Blocks/Tab/Row),掌握事件监听(如按钮点击、滑块调节)与数据绑定机制。
Plotly 图表开发技巧,例如雷达图中多模型曲线的颜色编码、分组柱状图的维度映射。
前端数据格式化处理,将模型翻译结果转换为 JSON 格式并在 Code 组件中高亮展示。
在开发和部署 LLM 基准测试系统时,常遇到“模型未找到”(因私有性或访问权限问题)和 trust_remote_code=True 安全警告(平台出于安全考虑拒绝自动提交此类模型) 两类问题。解决方案是选择公开可用的模型,并避免使用需要 trust_remote_code=True 的模型进行平台提交。
6. 结论与展望
本项目成功构建了一个中文到英文翻译模型对比评估系统,并利用 GRACE 框架对 Opus-MT 和 T5-Small 进行了多维度分析。结果显示,专门翻译模型在质量上表现稳定,而小型通用模型在效率上优势明显。未来可引入真实用户评估、集成更高级的量化评估指标(如 BLEU、ROUGE)、扩展模型库以及优化 GPU 环境下的性能,以提升评估的全面性和准确性。 """ """
Start the configuration
Most of the variables to change for a default leaderboard are in src/env.py (replace the path for your leaderboard) and src/about.py (for tasks).
Results files should have the following format and be stored as json files:
{
"config": {
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
"model_name": "path of the model on the hub: org/model",
"model_sha": "revision on the hub",
},
"results": {
"task_name": {
"metric_name": score,
},
"task_name2": {
"metric_name": score,
}
}
}
Request files are created automatically by this tool.
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
Code logic for more complex edits
You'll find
- the main table' columns names and properties in
src/display/utils.py - the logic to read all results and request files, then convert them in dataframe lines, in
src/leaderboard/read_evals.py, andsrc/populate.py - the logic to allow or filter submissions in
src/submission/submit.pyandsrc/submission/check_validity.py

