hello-universe's picture
Add app, model loader, requirements.txt
84c4b50
raw
history blame
1.29 kB
import streamlit as st
import torch
from PIL import Image
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
# ๋ชจ๋ธ ๋ฐ ์„ค์ • ๋กœ๋“œ
@st.cache_resource
def load_model():
feature_extractor = AutoFeatureExtractor.from_pretrained("xinyu1205/recognize-anything-plus-model")
model = AutoModelForImageClassification.from_pretrained("xinyu1205/recognize-anything-plus-model")
model.eval()
return feature_extractor, model
# ์˜ˆ์ธก ํ•จ์ˆ˜
def predict(image, feature_extractor, model):
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# ์ƒ์œ„ 5๊ฐœ ํƒœ๊ทธ ๋ฐ˜ํ™˜
top_5 = torch.topk(logits, k=5)
return [model.config.id2label[i.item()] for i in top_5.indices[0]]
# Streamlit ์•ฑ
st.title("RAM++ Image Tagging")
feature_extractor, model = load_model()
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
if st.button('Get Tags'):
tags = predict(image, feature_extractor, model)
st.write("Predicted Tags:")
st.write(", ".join(tags))