NLP-Project / app.py
heihei12138's picture
app.py
d919041 verified
import gradio as gr
import pytesseract
from PIL import Image
import requests
import re
import traceback
import os
# 配置 Tesseract OCR 的路径(Hugging Face Spaces 自动配置)
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
# 使用环境变量获取 Hugging Face API Token
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Math-72B-Instruct"
API_TOKEN = os.getenv("HF_API_TOKEN") # 从环境变量获取 Token
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
# OCR 识别函数
def ocr_with_tesseract(image_path):
try:
image = Image.open(image_path).convert("L")
config = "--psm 6"
text = pytesseract.image_to_string(image, config=config)
text = re.sub(r'[^0-9a-zA-Z=+\-*/()., ]', '', text)
return text if text else "OCR 识别失败"
except Exception as e:
return f"OCR 识别错误: {e}\n{traceback.format_exc()}"
# AI 解答生成函数
def generate_solution_with_qwen(question):
prompt = f"请详细解答以下数学题目:{question}"
payload = {"inputs": prompt}
response = requests.post(API_URL, headers=HEADERS, json=payload)
if response.status_code == 200:
result = response.json()
return result.get('generated_text', "解答生成失败")
else:
return f"API 调用失败,状态码: {response.status_code}, 响应: {response.text}"
# 主处理函数
def process(image_path):
ocr_result = ocr_with_tesseract(image_path)
ai_solution = generate_solution_with_qwen(ocr_result)
return ocr_result, ai_solution
# 构建 Gradio 应用界面
def build_interface():
with gr.Blocks() as interface:
gr.Markdown("# 📚 高级 AI 数学解题助手")
image_input = gr.Image(type="filepath", label="上传数学题目图片")
ocr_output = gr.Textbox(label="OCR 识别结果")
ai_output = gr.Markdown(label="AI 解答")
submit_button = gr.Button("识别并解答")
submit_button.click(fn=process, inputs=image_input, outputs=[ocr_output, ai_output])
return interface
# 启动 Gradio 应用
interface = build_interface()
interface.launch()