heihei12138 commited on
Commit
d919041
1 Parent(s): 2f67590
Files changed (1) hide show
  1. app.py +58 -63
app.py CHANGED
@@ -1,64 +1,59 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import pytesseract
3
+ from PIL import Image
4
+ import requests
5
+ import re
6
+ import traceback
7
+ import os
8
+
9
+ # 配置 Tesseract OCR 的路径(Hugging Face Spaces 自动配置)
10
+ pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
11
+
12
+ # 使用环境变量获取 Hugging Face API Token
13
+ API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Math-72B-Instruct"
14
+ API_TOKEN = os.getenv("HF_API_TOKEN") # 从环境变量获取 Token
15
+ HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
16
+
17
+ # OCR 识别函数
18
+ def ocr_with_tesseract(image_path):
19
+ try:
20
+ image = Image.open(image_path).convert("L")
21
+ config = "--psm 6"
22
+ text = pytesseract.image_to_string(image, config=config)
23
+ text = re.sub(r'[^0-9a-zA-Z=+\-*/()., ]', '', text)
24
+ return text if text else "OCR 识别失败"
25
+ except Exception as e:
26
+ return f"OCR 识别错误: {e}\n{traceback.format_exc()}"
27
+
28
+ # AI 解答生成函数
29
+ def generate_solution_with_qwen(question):
30
+ prompt = f"请详细解答以下数学题目:{question}"
31
+ payload = {"inputs": prompt}
32
+ response = requests.post(API_URL, headers=HEADERS, json=payload)
33
+
34
+ if response.status_code == 200:
35
+ result = response.json()
36
+ return result.get('generated_text', "解答生成失败")
37
+ else:
38
+ return f"API 调用失败,状态码: {response.status_code}, 响应: {response.text}"
39
+
40
+ # 主处理函数
41
+ def process(image_path):
42
+ ocr_result = ocr_with_tesseract(image_path)
43
+ ai_solution = generate_solution_with_qwen(ocr_result)
44
+ return ocr_result, ai_solution
45
+
46
+ # 构建 Gradio 应用界面
47
+ def build_interface():
48
+ with gr.Blocks() as interface:
49
+ gr.Markdown("# 📚 高级 AI 数学解题助手")
50
+ image_input = gr.Image(type="filepath", label="上传数学题目图片")
51
+ ocr_output = gr.Textbox(label="OCR 识别结果")
52
+ ai_output = gr.Markdown(label="AI 解答")
53
+ submit_button = gr.Button("识别并解答")
54
+ submit_button.click(fn=process, inputs=image_input, outputs=[ocr_output, ai_output])
55
+ return interface
56
+
57
+ # 启动 Gradio 应用
58
+ interface = build_interface()
59
+ interface.launch()