Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -30,8 +30,8 @@ def resize(max_side,img):
|
|
30 |
#wpercent = (basewidth/float(img.size[0]))
|
31 |
#hsize = int((float(img.size[1])*float(wpercent)))
|
32 |
#img = img.resize((basewidth,hsize), Image.ANTIALIAS)
|
33 |
-
|
34 |
-
|
35 |
if max(h, w) > max_side:
|
36 |
scale_ratio = max_side / max(h, w)
|
37 |
wsize=int(w*scale_ratio)
|
@@ -66,7 +66,7 @@ title="RefVSR"
|
|
66 |
#description="Demo application for Reference-based Video Super-Resolution (RefVSR).\nInstruction: Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively.\nNote 1: This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model might not take advantage of temporal frames. \nNote 2: The model is our small 8K model trained with the proposed two-stage training strategy. \nNote 3: The spatial size of input LR and Ref frames is 1920x1080 (HD), in the PNG format."
|
67 |
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively."
|
68 |
|
69 |
-
article = "<p style='text-align: center'>This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is our small 8K model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The
|
70 |
|
71 |
LR = resize(256, Image.open('LR.png'))
|
72 |
Ref = resize(256, Image.open('Ref.png'))
|
|
|
30 |
#wpercent = (basewidth/float(img.size[0]))
|
31 |
#hsize = int((float(img.size[1])*float(wpercent)))
|
32 |
#img = img.resize((basewidth,hsize), Image.ANTIALIAS)
|
33 |
+
w = img.size[0]
|
34 |
+
h = img.size[1]
|
35 |
if max(h, w) > max_side:
|
36 |
scale_ratio = max_side / max(h, w)
|
37 |
wsize=int(w*scale_ratio)
|
|
|
66 |
#description="Demo application for Reference-based Video Super-Resolution (RefVSR).\nInstruction: Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively.\nNote 1: This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model might not take advantage of temporal frames. \nNote 2: The model is our small 8K model trained with the proposed two-stage training strategy. \nNote 3: The spatial size of input LR and Ref frames is 1920x1080 (HD), in the PNG format."
|
67 |
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively."
|
68 |
|
69 |
+
article = "<p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is our small 8K model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The frames will be resized so that the length of a longer side of the frames doesn't exceed 256 pixels.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
70 |
|
71 |
LR = resize(256, Image.open('LR.png'))
|
72 |
Ref = resize(256, Image.open('Ref.png'))
|