Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -25,11 +25,19 @@ os.makedirs(Ref_path)
|
|
25 |
os.makedirs(Ref_path_T)
|
26 |
os.makedirs('result')
|
27 |
|
28 |
-
def resize(
|
29 |
-
basewidth =
|
30 |
-
wpercent = (basewidth/float(img.size[0]))
|
31 |
-
hsize = int((float(img.size[1])*float(wpercent)))
|
32 |
-
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
return img
|
34 |
|
35 |
def inference(LR, Ref):
|
@@ -58,10 +66,10 @@ title="RefVSR"
|
|
58 |
#description="Demo application for Reference-based Video Super-Resolution (RefVSR).\nInstruction: Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively.\nNote 1: This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model might not take advantage of temporal frames. \nNote 2: The model is our small 8K model trained with the proposed two-stage training strategy. \nNote 3: The spatial size of input LR and Ref frames is 1920x1080 (HD), in the PNG format."
|
59 |
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively."
|
60 |
|
61 |
-
article = "<p style='text-align: center'>This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model
|
62 |
|
63 |
-
LR = resize(256, 'LR.png')
|
64 |
-
Ref = resize(256, 'Ref.png')
|
65 |
LR.save('LR.png')
|
66 |
Ref.save('Ref.png')
|
67 |
|
|
|
25 |
os.makedirs(Ref_path_T)
|
26 |
os.makedirs('result')
|
27 |
|
28 |
+
def resize(max_side,img):
|
29 |
+
#basewidth = max_side
|
30 |
+
#wpercent = (basewidth/float(img.size[0]))
|
31 |
+
#hsize = int((float(img.size[1])*float(wpercent)))
|
32 |
+
#img = img.resize((basewidth,hsize), Image.ANTIALIAS)
|
33 |
+
h = img.size[0]
|
34 |
+
w = img.size[1]
|
35 |
+
if max(h, w) > max_side:
|
36 |
+
scale_ratio = max_side / max(h, w)
|
37 |
+
wsize=int(w*scale_ratio)
|
38 |
+
hsize=int(h*scale_ratio)
|
39 |
+
img = img.resize((wsize,hsize), Image.ANTIALIAS)
|
40 |
+
|
41 |
return img
|
42 |
|
43 |
def inference(LR, Ref):
|
|
|
66 |
#description="Demo application for Reference-based Video Super-Resolution (RefVSR).\nInstruction: Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively.\nNote 1: This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model might not take advantage of temporal frames. \nNote 2: The model is our small 8K model trained with the proposed two-stage training strategy. \nNote 3: The spatial size of input LR and Ref frames is 1920x1080 (HD), in the PNG format."
|
67 |
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively."
|
68 |
|
69 |
+
article = "<p style='text-align: center'>This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is our small 8K model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The spatial size of input LR and Ref frames is 1920x1080 (HD), in the PNG format.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
70 |
|
71 |
+
LR = resize(256, Image.open('LR.png'))
|
72 |
+
Ref = resize(256, Image.open('Ref.png'))
|
73 |
LR.save('LR.png')
|
74 |
Ref.save('Ref.png')
|
75 |
|