peekaboo-demo / demo.py
hasibzunair's picture
update demo
c4a20dc
# Code for Peekaboo
# Author: Hasib Zunair
# Modified from https://github.com/valeoai/FOUND, see license below.
# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Visualize model predictions"""
import os
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image
from model import PeekabooModel
from misc import load_config
from torchvision import transforms as T
NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Evaluation of Peekaboo",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--img-path",
type=str,
default="data/examples/dinosaur.jpeg",
help="Image path.",
)
parser.add_argument(
"--model-weights",
type=str,
default="data/weights/peekaboo_decoder_weights_niter500.pt",
)
parser.add_argument(
"--config",
type=str,
default="configs/peekaboo_DUTS-TR.yaml",
)
parser.add_argument(
"--output-dir",
type=str,
default="outputs",
)
args = parser.parse_args()
# Saving dir
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Configuration
config, _ = load_config(args.config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model
model = PeekabooModel(
vit_model=config.model["pre_training"],
vit_arch=config.model["arch"],
vit_patch_size=config.model["patch_size"],
enc_type_feats=config.peekaboo["feats"],
)
# Load weights
model.decoder_load_weights(args.model_weights)
model.eval()
print(f"Model {args.model_weights} loaded correctly.")
# Load the image
with open(args.img_path, "rb") as f:
img = Image.open(f)
img = img.convert("RGB")
t = T.Compose([T.ToTensor(), NORMALIZE])
img_t = t(img)[None, :, :, :]
inputs = img_t.to(device)
# Forward step
with torch.no_grad():
preds = model(inputs, for_eval=True)
sigmoid = nn.Sigmoid()
h, w = img_t.shape[-2:]
preds_up = F.interpolate(
preds, scale_factor=model.vit_patch_size, mode="bilinear", align_corners=False
)[..., :h, :w]
preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float()
plt.figure()
plt.imshow(img)
plt.imshow(
preds_up.cpu().squeeze().numpy(), "gray", interpolation="none", alpha=0.5
)
plt.axis("off")
img_name = args.img_path
img_name = img_name.split("/")[-1].split(".")[0]
plt.savefig(
os.path.join(args.output_dir, f"{img_name}-peekaboo.png"),
bbox_inches="tight",
pad_inches=0,
)
plt.close()
print(f"Saved model prediction.")