Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
from model import U2NET | |
from torch.autograd import Variable | |
import numpy as np | |
from glob import glob | |
import os | |
def detect_single_face(face_cascade,img): | |
# Convert into grayscale | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# Detect faces | |
faces = face_cascade.detectMultiScale(gray, 1.1, 4) | |
if(len(faces)==0): | |
print("Warming: no face detection, the portrait u2net will run on the whole image!") | |
return None | |
# filter to keep the largest face | |
wh = 0 | |
idx = 0 | |
for i in range(0,len(faces)): | |
(x,y,w,h) = faces[i] | |
if(wh<w*h): | |
idx = i | |
wh = w*h | |
return faces[idx] | |
# crop, pad and resize face region to 512x512 resolution | |
def crop_face(img, face): | |
# no face detected, return the whole image and the inference will run on the whole image | |
if(face is None): | |
return img | |
(x, y, w, h) = face | |
height,width = img.shape[0:2] | |
# crop the face with a bigger bbox | |
hmw = h - w | |
# hpad = int(h/2)+1 | |
# wpad = int(w/2)+1 | |
l,r,t,b = 0,0,0,0 | |
lpad = int(float(w)*0.4) | |
left = x-lpad | |
if(left<0): | |
l = lpad-x | |
left = 0 | |
rpad = int(float(w)*0.4) | |
right = x+w+rpad | |
if(right>width): | |
r = right-width | |
right = width | |
tpad = int(float(h)*0.6) | |
top = y - tpad | |
if(top<0): | |
t = tpad-y | |
top = 0 | |
bpad = int(float(h)*0.2) | |
bottom = y+h+bpad | |
if(bottom>height): | |
b = bottom-height | |
bottom = height | |
im_face = img[top:bottom,left:right] | |
if(len(im_face.shape)==2): | |
im_face = np.repeat(im_face[:,:,np.newaxis],(1,1,3)) | |
im_face = np.pad(im_face,((t,b),(l,r),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255))) | |
# pad to achieve image with square shape for avoding face deformation after resizing | |
hf,wf = im_face.shape[0:2] | |
if(hf-2>wf): | |
wfp = int((hf-wf)/2) | |
im_face = np.pad(im_face,((0,0),(wfp,wfp),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255))) | |
elif(wf-2>hf): | |
hfp = int((wf-hf)/2) | |
im_face = np.pad(im_face,((hfp,hfp),(0,0),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255))) | |
# resize to have 512x512 resolution | |
im_face = cv2.resize(im_face, (512,512), interpolation = cv2.INTER_AREA) | |
return im_face | |
def normPRED(d): | |
ma = torch.max(d) | |
mi = torch.min(d) | |
dn = (d-mi)/(ma-mi) | |
return dn | |
def inference(net,input): | |
# normalize the input | |
tmpImg = np.zeros((input.shape[0],input.shape[1],3)) | |
input = input/np.max(input) | |
tmpImg[:,:,0] = (input[:,:,2]-0.406)/0.225 | |
tmpImg[:,:,1] = (input[:,:,1]-0.456)/0.224 | |
tmpImg[:,:,2] = (input[:,:,0]-0.485)/0.229 | |
# convert BGR to RGB | |
tmpImg = tmpImg.transpose((2, 0, 1)) | |
tmpImg = tmpImg[np.newaxis,:,:,:] | |
tmpImg = torch.from_numpy(tmpImg) | |
# convert numpy array to torch tensor | |
tmpImg = tmpImg.type(torch.FloatTensor) | |
if torch.cuda.is_available(): | |
tmpImg = Variable(tmpImg.cuda()) | |
else: | |
tmpImg = Variable(tmpImg) | |
# inference | |
d1,d2,d3,d4,d5,d6,d7= net(tmpImg) | |
# normalization | |
pred = 1.0 - d1[:,0,:,:] | |
pred = normPRED(pred) | |
# convert torch tensor to numpy array | |
pred = pred.squeeze() | |
pred = pred.cpu().data.numpy() | |
del d1,d2,d3,d4,d5,d6,d7 | |
return pred | |
def main(): | |
# get the image path list for inference | |
im_list = glob('./test_data/test_portrait_images/your_portrait_im/*') | |
print("Number of images: ",len(im_list)) | |
# indicate the output directory | |
out_dir = './test_data/test_portrait_images/your_portrait_results' | |
if(not os.path.exists(out_dir)): | |
os.mkdir(out_dir) | |
# Load the cascade face detection model | |
face_cascade = cv2.CascadeClassifier('./saved_models/face_detection_cv2/haarcascade_frontalface_default.xml') | |
# u2net_portrait path | |
model_dir = './saved_models/u2net_portrait/u2net_portrait.pth' | |
# load u2net_portrait model | |
net = U2NET(3,1) | |
net.load_state_dict(torch.load(model_dir)) | |
if torch.cuda.is_available(): | |
net.cuda() | |
net.eval() | |
# do the inference one-by-one | |
for i in range(0,len(im_list)): | |
print("--------------------------") | |
print("inferencing ", i, "/", len(im_list), im_list[i]) | |
# load each image | |
img = cv2.imread(im_list[i]) | |
height,width = img.shape[0:2] | |
face = detect_single_face(face_cascade,img) | |
im_face = crop_face(img, face) | |
im_portrait = inference(net,im_face) | |
# save the output | |
cv2.imwrite(out_dir+"/"+im_list[i].split('/')[-1][0:-4]+'.png',(im_portrait*255).astype(np.uint8)) | |
if __name__ == '__main__': | |
main() | |