hasibzunair's picture
added files
4a285f6
raw
history blame
4.94 kB
import io
from enum import Enum
from typing import List, Optional, Union
import numpy as np
from cv2 import (
BORDER_DEFAULT,
MORPH_ELLIPSE,
MORPH_OPEN,
GaussianBlur,
getStructuringElement,
morphologyEx,
)
from PIL import Image
from PIL.Image import Image as PILImage
from pymatting.alpha.estimate_alpha_cf import estimate_alpha_cf
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from pymatting.util.util import stack_images
from scipy.ndimage.morphology import binary_erosion
from .session_base import BaseSession
from .session_factory import new_session
kernel = getStructuringElement(MORPH_ELLIPSE, (3, 3))
class ReturnType(Enum):
BYTES = 0
PILLOW = 1
NDARRAY = 2
def alpha_matting_cutout(
img: PILImage,
mask: PILImage,
foreground_threshold: int,
background_threshold: int,
erode_structure_size: int,
) -> PILImage:
if img.mode == "RGBA" or img.mode == "CMYK":
img = img.convert("RGB")
img = np.asarray(img)
mask = np.asarray(mask)
is_foreground = mask > foreground_threshold
is_background = mask < background_threshold
structure = None
if erode_structure_size > 0:
structure = np.ones(
(erode_structure_size, erode_structure_size), dtype=np.uint8
)
is_foreground = binary_erosion(is_foreground, structure=structure)
is_background = binary_erosion(is_background, structure=structure, border_value=1)
trimap = np.full(mask.shape, dtype=np.uint8, fill_value=128)
trimap[is_foreground] = 255
trimap[is_background] = 0
img_normalized = img / 255.0
trimap_normalized = trimap / 255.0
alpha = estimate_alpha_cf(img_normalized, trimap_normalized)
foreground = estimate_foreground_ml(img_normalized, alpha)
cutout = stack_images(foreground, alpha)
cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8)
cutout = Image.fromarray(cutout)
return cutout
def naive_cutout(img: PILImage, mask: PILImage) -> PILImage:
empty = Image.new("RGBA", (img.size), 0)
cutout = Image.composite(img, empty, mask)
return cutout
def get_concat_v_multi(imgs: List[PILImage]) -> PILImage:
pivot = imgs.pop(0)
for im in imgs:
pivot = get_concat_v(pivot, im)
return pivot
def get_concat_v(img1: PILImage, img2: PILImage) -> PILImage:
dst = Image.new("RGBA", (img1.width, img1.height + img2.height))
dst.paste(img1, (0, 0))
dst.paste(img2, (0, img1.height))
return dst
def post_process(mask: np.ndarray) -> np.ndarray:
"""
Post Process the mask for a smooth boundary by applying Morphological Operations
Research based on paper: https://www.sciencedirect.com/science/article/pii/S2352914821000757
args:
mask: Binary Numpy Mask
"""
mask = morphologyEx(mask, MORPH_OPEN, kernel)
mask = GaussianBlur(mask, (5, 5), sigmaX=2, sigmaY=2, borderType=BORDER_DEFAULT)
mask = np.where(mask < 127, 0, 255).astype(np.uint8) # convert again to binary
return mask
def remove(
data: Union[bytes, PILImage, np.ndarray],
alpha_matting: bool = False,
alpha_matting_foreground_threshold: int = 240,
alpha_matting_background_threshold: int = 10,
alpha_matting_erode_size: int = 10,
session: Optional[BaseSession] = None,
only_mask: bool = False,
post_process_mask: bool = False,
) -> Union[bytes, PILImage, np.ndarray]:
if isinstance(data, PILImage):
return_type = ReturnType.PILLOW
img = data
elif isinstance(data, bytes):
return_type = ReturnType.BYTES
img = Image.open(io.BytesIO(data))
elif isinstance(data, np.ndarray):
return_type = ReturnType.NDARRAY
img = Image.fromarray(data)
else:
raise ValueError("Input type {} is not supported.".format(type(data)))
if session is None:
session = new_session("u2net")
masks = session.predict(img)
cutouts = []
for mask in masks:
if post_process_mask:
mask = Image.fromarray(post_process(np.array(mask)))
if only_mask:
cutout = mask
elif alpha_matting:
try:
cutout = alpha_matting_cutout(
img,
mask,
alpha_matting_foreground_threshold,
alpha_matting_background_threshold,
alpha_matting_erode_size,
)
except ValueError:
cutout = naive_cutout(img, mask)
else:
cutout = naive_cutout(img, mask)
cutouts.append(cutout)
cutout = img
if len(cutouts) > 0:
cutout = get_concat_v_multi(cutouts)
if ReturnType.PILLOW == return_type:
return cutout
if ReturnType.NDARRAY == return_type:
return np.asarray(cutout)
bio = io.BytesIO()
cutout.save(bio, "PNG")
bio.seek(0)
return bio.read()