Spaces:
Runtime error
Runtime error
# Copyright (C) 2017 NVIDIA Corporation. All rights reserved. | |
# Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). | |
import os | |
import torch | |
import sys | |
class BaseModel(torch.nn.Module): | |
def name(self): | |
return 'BaseModel' | |
def initialize(self, opt): | |
self.opt = opt | |
self.gpu_ids = opt.gpu_ids | |
self.isTrain = opt.isTrain | |
self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor | |
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) | |
def set_input(self, input): | |
self.input = input | |
def forward(self): | |
pass | |
# used in test time, no backprop | |
def test(self): | |
pass | |
def get_image_paths(self): | |
pass | |
def optimize_parameters(self): | |
pass | |
def get_current_visuals(self): | |
return self.input | |
def get_current_errors(self): | |
return {} | |
def save(self, label): | |
pass | |
# helper saving function that can be used by subclasses | |
def save_network(self, network, network_label, epoch_label, gpu_ids): | |
save_filename = '%s_net_%s.pth' % (epoch_label, network_label) | |
save_path = os.path.join(self.save_dir, save_filename) | |
torch.save(network.state_dict(), save_path) | |
# if len(gpu_ids) and torch.cuda.is_available(): | |
# network.cuda() | |
# helper loading function that can be used by subclasses | |
def load_network(self, network, network_label, epoch_label, save_dir=''): | |
save_filename = '%s_net_%s.pth' % (epoch_label, network_label) | |
print(save_filename) | |
if not save_dir: | |
save_dir = self.save_dir | |
save_path = os.path.join(save_dir, save_filename) | |
if not os.path.isfile(save_path): | |
print('%s not exists yet!' % save_path) | |
if network_label == 'G': | |
raise('Generator must exist!') | |
else: | |
# network.load_state_dict(torch.load(save_path)) | |
network.load_state_dict(torch.load(save_path)) | |
# except: | |
# pretrained_dict = torch.load(save_path) | |
# model_dict = network.state_dict() | |
# try: | |
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} | |
# network.load_state_dict(pretrained_dict) | |
# if self.opt.verbose: | |
# print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label) | |
# except: | |
# print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label) | |
# for k, v in pretrained_dict.items(): | |
# if v.size() == model_dict[k].size(): | |
# model_dict[k] = v | |
# | |
# if sys.version_info >= (3,0): | |
# not_initialized = set() | |
# else: | |
# from sets import Set | |
# not_initialized = Set() | |
# | |
# for k, v in model_dict.items(): | |
# if k not in pretrained_dict or v.size() != pretrained_dict[k].size(): | |
# not_initialized.add(k.split('.')[0]) | |
# | |
# print(sorted(not_initialized)) | |
# network.load_state_dict(model_dict) | |
def update_learning_rate(): | |
pass | |