Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
""" | |
@Author : Peike Li | |
@Contact : peike.li@yahoo.com | |
@File : simple_extractor.py | |
@Time : 8/30/19 8:59 PM | |
@Desc : Simple Extractor | |
@License : This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import os | |
import torch | |
import argparse | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from torch.utils.data import DataLoader | |
import torchvision.transforms as transforms | |
import networks | |
from utils.transforms import transform_logits | |
from datasets.simple_extractor_dataset import SimpleFolderDataset | |
dataset_settings = { | |
'lip': { | |
'input_size': [473, 473], | |
'num_classes': 20, | |
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', | |
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', | |
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] | |
}, | |
'atr': { | |
'input_size': [512, 512], | |
'num_classes': 18, | |
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', | |
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] | |
}, | |
'pascal': { | |
'input_size': [512, 512], | |
'num_classes': 7, | |
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], | |
} | |
} | |
def get_arguments(): | |
"""Parse all the arguments provided from the CLI. | |
Returns: | |
A list of parsed arguments. | |
""" | |
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing") | |
parser.add_argument("--dataset", type=str, default='lip', choices=['lip', 'atr', 'pascal']) | |
parser.add_argument("--model-restore", type=str, default='', help="restore pretrained model parameters.") | |
parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.") | |
parser.add_argument("--input-dir", type=str, default='', help="path of input image folder.") | |
parser.add_argument("--output-dir", type=str, default='', help="path of output image folder.") | |
parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.") | |
return parser.parse_args() | |
def get_palette(num_cls): | |
""" Returns the color map for visualizing the segmentation mask. | |
Args: | |
num_cls: Number of classes | |
Returns: | |
The color map | |
""" | |
n = num_cls | |
palette = [0] * (n * 3) | |
for j in range(0, n): | |
lab = j | |
palette[j * 3 + 0] = 0 | |
palette[j * 3 + 1] = 0 | |
palette[j * 3 + 2] = 0 | |
i = 0 | |
while lab: | |
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) | |
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) | |
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) | |
i += 1 | |
lab >>= 3 | |
return palette | |
def main(): | |
args = get_arguments() | |
gpus = [int(i) for i in args.gpu.split(',')] | |
assert len(gpus) == 1 | |
if not args.gpu == 'None': | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu | |
num_classes = dataset_settings[args.dataset]['num_classes'] | |
input_size = dataset_settings[args.dataset]['input_size'] | |
label = dataset_settings[args.dataset]['label'] | |
print("Evaluating total class number {} with {}".format(num_classes, label)) | |
model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None) | |
state_dict = torch.load(args.model_restore)['state_dict'] | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
model.load_state_dict(new_state_dict) | |
model.cuda() | |
model.eval() | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) | |
]) | |
dataset = SimpleFolderDataset(root=args.input_dir, input_size=input_size, transform=transform) | |
dataloader = DataLoader(dataset) | |
if not os.path.exists(args.output_dir): | |
os.makedirs(args.output_dir) | |
palette = get_palette(num_classes) | |
with torch.no_grad(): | |
for idx, batch in enumerate(tqdm(dataloader)): | |
image, meta = batch | |
img_name = meta['name'][0] | |
c = meta['center'].numpy()[0] | |
s = meta['scale'].numpy()[0] | |
w = meta['width'].numpy()[0] | |
h = meta['height'].numpy()[0] | |
output = model(image.cuda()) | |
upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True) | |
upsample_output = upsample(output[0][-1][0].unsqueeze(0)) | |
upsample_output = upsample_output.squeeze() | |
upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC | |
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size) | |
parsing_result = np.argmax(logits_result, axis=2) | |
parsing_result_path = os.path.join(args.output_dir, img_name[:-4] + '.png') | |
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) | |
#output_img.putpalette(palette) | |
output_img.save(parsing_result_path) | |
if args.logits: | |
logits_result_path = os.path.join(args.output_dir, img_name[:-4] + '.npy') | |
np.save(logits_result_path, logits_result) | |
return | |
if __name__ == '__main__': | |
main() |