translation_app / app.py
harupurito's picture
Update app.py
e86f428
import streamlit as st
import speech_recognition as sr
from googletrans import Translator
from gtts import gTTS
from playsound import playsound
from PIL import Image
from streamlit_mic_recorder import mic_recorder,speech_to_text
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
#from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
# import logging
# import logging.handlers
# import queue
# import threading
# import time
# import urllib.request
# import os
# from collections import deque
# from pathlib import Path
# from typing import List
# import av
# import numpy as np
# import pydub
# import streamlit as st
# from twilio.rest import Client
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
#from streamlit_mic_recorder import mic_recorder,speech_to_text
# Initialize the recognizer
recognizer = sr.Recognizer()
# Initialize the translator
translator = Translator()
# Language dictionary
language_dict = {
'bengali': 'bn',
'english': 'en',
'gujarati': 'gu',
'hindi': 'hi',
'malayalam': 'ml',
'marathi': 'mr',
'nepali': 'ne',
'odia': 'or',
'punjabi': 'pa',
'tamil': 'ta',
'telugu': 'te',
'urdu': 'ur',
}
# language_dict = {
# 'afrikaans': 'af',
# 'albanian': 'sq',
# 'amharic': 'am',
# 'arabic': 'ar',
# 'armenian': 'hy',
# 'azerbaijani': 'az',
# 'basque': 'eu',
# 'belarusian': 'be',
# 'bengali': 'bn',
# 'bosnian': 'bs',
# 'bulgarian': 'bg',
# 'catalan': 'ca',
# 'cebuano': 'ceb',
# 'chichewa': 'ny',
# 'chinese (simplified)': 'zh',
# 'chinese (traditional)': 'zh-TW',
# 'corsican': 'co',
# 'croatian': 'hr',
# 'czech': 'cs',
# 'danish': 'da',
# 'dutch': 'nl',
# 'english': 'en',
# 'esperanto': 'eo',
# 'estonian': 'et',
# 'filipino': 'tl',
# 'finnish': 'fi',
# 'french': 'fr',
# 'frisian': 'fy',
# 'galician': 'gl',
# 'georgian': 'ka',
# 'german': 'de',
# 'greek': 'el',
# 'gujarati': 'gu',
# 'haitian creole': 'ht',
# 'hausa': 'ha',
# 'hawaiian': 'haw',
# 'hebrew': 'he',
# 'hindi': 'hi',
# 'hmong': 'hmn',
# 'hungarian': 'hu',
# 'icelandic': 'is',
# 'igbo': 'ig',
# 'indonesian': 'id',
# 'irish': 'ga',
# 'italian': 'it',
# 'japanese': 'ja',
# 'javanese': 'jv',
# 'kannada': 'kn',
# 'kazakh': 'kk',
# 'khmer': 'km',
# 'kinyarwanda': 'rw',
# 'korean': 'ko',
# 'kurdish': 'ku',
# 'kyrgyz': 'ky',
# 'lao': 'lo',
# 'latin': 'la',
# 'latvian': 'lv',
# 'lithuanian': 'lt',
# 'luxembourgish': 'lb',
# 'macedonian': 'mk',
# 'malagasy': 'mg',
# 'malay': 'ms',
# 'malayalam': 'ml',
# 'maltese': 'mt',
# 'maori': 'mi',
# 'marathi': 'mr',
# 'mongolian': 'mn',
# 'myanmar (burmese)': 'my',
# 'nepali': 'ne',
# 'norwegian': 'no',
# 'odia': 'or',
# 'pashto': 'ps',
# 'persian': 'fa',
# 'polish': 'pl',
# 'portuguese': 'pt',
# 'punjabi': 'pa',
# 'romanian': 'ro',
# 'russian': 'ru',
# 'samoan': 'sm',
# 'scots gaelic': 'gd',
# 'serbian': 'sr',
# 'sesotho': 'st',
# 'shona': 'sn',
# 'sindhi': 'sd',
# 'sinhala': 'si',
# 'slovak': 'sk',
# 'slovenian': 'sl',
# 'somali': 'so',
# 'spanish': 'es',
# 'sundanese': 'su',
# 'swahili': 'sw',
# 'swedish': 'sv',
# 'tajik': 'tg',
# 'tamil': 'ta',
# 'telugu': 'te',
# 'thai': 'th',
# 'turkish': 'tr',
# 'ukrainian': 'uk',
# 'urdu': 'ur',
# 'uyghur': 'ug',
# 'uzbek': 'uz',
# 'vietnamese': 'vi',
# 'welsh': 'cy',
# 'xhosa': 'xh',
# 'yiddish': 'yi',
# 'yoruba': 'yo',
# 'zulu': 'zu',
# }
#img=Image.open('finallogo.jpg')
# col1, col2 = st.columns([1,3])
# #with col1:
# #st.image(img, width=220)
# with col2:
# custom_theme = {
# "theme": {
# "primaryColor": "#000000",
# "backgroundColor": "#89939E",
# "secondaryBackgroundColor": "#262730",
# "textColor": "#FFFFFF",
# "font": "Serif"
# }
# }
# # Apply custom theme to Streamlit
# st.markdown(
# f"""
# <style>
# :root {{
# --primary-color: {custom_theme["theme"]["primaryColor"]};
# --background-color: {custom_theme["theme"]["backgroundColor"]};
# --secondary-background-color: {custom_theme["theme"]["secondaryBackgroundColor"]};
# --text-color: {custom_theme["theme"]["textColor"]};
# --font: {custom_theme["theme"]["font"]};
# }}
# </style>
# """,
# unsafe_allow_html=True
# )
# st.header("")
# hide_st_style = """
# <style>
# #Mainmenu{visibility: hidden;}
# footer{visibility:hidden; }
# </style>
# """
# st.markdown(hide_st_style, unsafe_allow_html=True)
# @st.cache_data # type: ignore
# def get_ice_servers():
# """Use Twilio's TURN server because Streamlit Community Cloud has changed
# its infrastructure and WebRTC connection cannot be established without TURN server now. # noqa: E501
# We considered Open Relay Project (https://www.metered.ca/tools/openrelay/) too,
# but it is not stable and hardly works as some people reported like https://github.com/aiortc/aiortc/issues/832#issuecomment-1482420656 # noqa: E501
# See https://github.com/whitphx/streamlit-webrtc/issues/1213
# """
# # Ref: https://www.twilio.com/docs/stun-turn/api
# try:
# account_sid = "ACbea2776671d07a28bfa473b522b609fb"
# auth_token = "f9d226593c16124f8eaed4b8d2d5397b"
# except KeyError:
# logger.warning(
# "Twilio credentials are not set. Fallback to a free STUN server from Google." # noqa: E501
# )
# return [{"urls": ["stun:stun.l.google.com:19302"]}]
# client = Client(account_sid, auth_token)
# token = client.tokens.create()
# return token.ice_servers
# Function to recognize speech
# def recognize_speech(prompt, language='en'):
# try:
# # audio_source = mic_recorder(
# # start_prompt="Start recording",
# # stop_prompt="Stop recording",
# # just_once=False,
# # use_container_width=False,
# # key='recorder')
# with sr.Microphone() as source:
# st.write(prompt)
# # Use recognizer to adjust to ambient noise
# recognizer.adjust_for_ambient_noise(source, duration=1)
# audio = recognizer.listen(source)
# st.write("Recognizing...")
# # Recognize the speech in the specified language
# spoken_text = recognizer.recognize_google(audio, language=language)
# return spoken_text
# except sr.UnknownValueError:
# st.write("Sorry, I couldn't understand your speech.")
# Function to translate speech
def translate_speech():
# Get source language name and convert it to code
#source_language_name = recognize_speech("Please speak the source language name (e.g., 'English'): ")
# st.write("Record your voice, and play the recorded audio:")
# audio=mic_recorder(start_prompt="⏺️",stop_prompt="⏹️",key='recorder')
# if audio:
# st.audio(audio['bytes'])
st.title("BITranSlate")
source_language_name = st.selectbox('Please input the source language',language_dict)
source_language = language_dict[source_language_name]
target_language_name = st.selectbox('Please input the target language',language_dict)
target_language = language_dict[target_language_name]
#state=st.session_state
# if 'text_received' not in state:
# state.text_received=[]
c1,c2=st.columns(2)
with c1:
st.write("Convert speech to text:")
with c2:
text=speech_to_text(language=source_language,use_container_width=True,just_once=True,key='STT')
# if text:
# state.text_received.append(text)
# for text in state.text_received:
# st.text(text)
# Get sentence to translate
sentence = text
# while sentence is None:
# sentence = recognize_speech("Please speak the sentence to translate:", language=source_language)
# Get destination language name and convert it to code
# destination_language_name = recognize_speech("Please speak the destination language name (e.g., 'French'): ")
# destination_language = language_dict.get(destination_language_name.lower(), 'en')
# Translate the text to the desired language
#translated_text = translator.translate(sentence, src=source_language, dest=target_language)
nllb_langs = {'hindi':'hin_Deva',
'english':'eng_Latn',
'punjabi':'pan_Guru',
'odia':'ory_Orya',
'bengali':'ben_Beng',
'telugu':'tel_Tulu',
'tamil':'tam_Taml',
'nepali':'npi_Deva',
'marathi':'mar_Deva',
'malayalam':'mal_Mlym',
'kannada':'kan_Knda',
'gujarati':'guj_Gujr',
'afrikaans':'hin_Deva'
}
translator = pipeline('translation', model=AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M"), tokenizer=AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M"), src_lang=nllb_langs[source_language_name], tgt_lang=nllb_langs[target_language_name], max_length = 4000)
text_to_translate = text
translated_text = translator(text_to_translate)[0]['translation_text']
st.write(f"Source Language: {source_language_name}")
st.write(f"Sentence: {sentence}")
st.write(f"Destination Language: {target_language_name}")
st.write(f"Translated Text: {translated_text}")
# Using Google-Text-to-Speech to speak the translated text
# speak = gTTS(text=translated_text, lang=target_language, slow=False)
# speak.save("translated_voice.mp3")
# # Play the translated voice
# playsound('translated_voice.mp3')
#if st.button(" CLICK HERE TO TRANSLATE "):
translate_speech()