Spaces:
Running
Running
import os | |
from dotenv import load_dotenv | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel | |
class ArchIntelligent: | |
def __init__(self): | |
# Get private variables from enviroment | |
load_dotenv() | |
self.hf_token = os.getenv("HF_TOKEN") | |
self.style_models = os.getenv("STYLE_MODELS") | |
self.functional_models= os.getenv("FUNCTION_MODELS") | |
self.enhancement= os.getenv("REALISM_ENHANCE") | |
self.controlnet_model= os.getenv("CONTROLNET") | |
self.base_model = os.getenv("BASEMODEL") | |
self.model_config = {} | |
# Configure ControlNet model | |
controlnet = ControlNetModel.from_pretrained( | |
self.controlnet_model, | |
torch_dtype= torch.float16, | |
cache_dir= r"huggingface_cache", | |
token= self.hf_token, | |
variant= 'fp16', | |
) | |
self.pipeline= StableDiffusionXLControlNetPipeline.from_pretrained( | |
self.base_model, | |
controlnet= controlnet, | |
torch_dtype= torch.float16, | |
cache_dir= r"huggingface_cache", | |
token= self.hf_token, | |
variant= 'fp16', | |
) | |
# Enable memory-efficient optimizations | |
try: | |
self.pipeline.enable_xformers_memory_efficient_attention() | |
self.pipeline.enable_vae_slicing() | |
self.pipeline.enable_sequential_cpu_offload() | |
print(f"xFormers enabled\nVAE Slicing mode enabled\nSequential CPU Offload enabled!") | |
except Exception as e: | |
print(f"Warning: Some optimizations failed: {e}") | |
def img2canny(self, input_img): | |
""" | |
Processing user's condition image into edge map | |
Parameters | |
input_img : PIL image | |
Returns | |
PIL image | |
""" | |
np_image = np.array(input_img) | |
# Convert the image into a grayscale image then extract edge map | |
canny = cv2.cvtColor(np_image, cv2.COLOR_RGB2GRAY) | |
canny = cv2.resize(canny, (1024, 1024)) | |
canny = cv2.Canny(canny, 100, 200) | |
canny = Image.fromarray(canny) | |
return canny | |
def process_config(self, config: dict): | |
style_dict = {"Modern": "Modernism", "Minimalism": "Minimalism", "Art Deco": "ArtDeco", | |
"Art Nouveau": "ArtNouveau", "Baroque": "Baroque", "Brutalist": "Brutalist", | |
"Classical": "Classical", "Neo-Classical": "Neo-Classical", "Cyberpunk": "Cyberpunk", | |
"Deconstructivism": "Deconstructivism", "Futurism": "Futurism", "Gothic": "Gothic", | |
"Neo-Futurism": "Neo-Futurism", "Sustainable": "Sustainable", "Victorian": "Victorian"} | |
functional_dict = {"Residential": "Modern", "Villa": "Modern", "Office": "Office", "Skyscraper": "SkyScraper", | |
"Hotel": "Hotel", "School Campus": "SchoolCampus", "Farmhouse": "Farmhouse", "Playground": "PlayGround", | |
"Park": "Park", "Apartment": "Apartment", "Hospital": "Hospital", "Kindergarten": "KinderGarten", | |
"Church": "Church", "Container": "Container", "Bridge": "Bridge", "Resort": "Resort", "Airport": "Airport", | |
"Factory": "Factory", "Stadium": "Stadium", "Temple": "Temple", "Tree House": "TreeHouse"} | |
styles= config['style_names'] | |
functional= config['functional_names'] | |
season = config['season'] | |
landscape= config['landscape'] | |
weather= config['weather'] | |
day= config['time_of_day'] | |
config['posprompt_2'] = f"(((realistic))), (({styles})), (({functional})), ({landscape}), ({season}), ({weather}), ({day}), (high quality),\ | |
(high resolution), 4k render, detail, beautiful, cinematic lighting, hyper-realistic" | |
config['negprompt_2'] = "((blurry)), details are low, overlapping, (grainy), multiple angles, deformed structures, unnatural, unrealistic, cartoon, \ | |
anime, (painting), drawing, sketch, gibberish text, logo, noise, jpeg artifacts, mutation, (((worst quality))), ((low quality)), (((low resolution))),\ | |
messy, watermark, signature, cut off, low contrast, underexposed, overexposed, draft, disfigured, ugly, tiling, out of frame" | |
config["LoRA_style"] = style_dict[styles] | |
config["LoRA_functional"] = functional_dict[functional] | |
config['adapter_weights'] = [1.0, 1.0, 0.8] | |
self.model_config = config | |
def generate(self): | |
""" | |
Generate building image using user's input arguments | |
""" | |
# Get user's prompts from dictionary | |
first_prompt = self.model_config["posprompt_1"] | |
second_prompt = self.model_config["posprompt_2"] | |
first_negprompt = self.model_config["negprompt_1"] | |
second_negprompt = self.model_config["negprompt_2"] | |
# Get user's image | |
input_image = self.model_config['image'] | |
# Get ControlNet conditioning scale value | |
controlnet_condition = self.model_config["condition_scale"] | |
# Get guidance scale value | |
guidance_scale = self.model_config["guidance"] | |
# Get render speed | |
render_speed = self.model_config["render_speed"] | |
# Get LoRA weight's name and their corresponding adapter weights | |
LoRA_style_names = self.model_config['LoRA_style'] | |
LoRA_functional_names = self.model_config['LoRA_functional'] | |
LoRA_enhancement_names = 'Realism' | |
adapter_weights = self.model_config['adapter_weights'] | |
LoRA_names = [LoRA_style_names, LoRA_functional_names, LoRA_enhancement_names] | |
self.pipeline.unload_lora_weights() | |
print(f"\n\nUNLOADED LORA WEIGHTS\n\n") | |
os.environ['HF_HOME'] = r"huggingface_cache" | |
self.pipeline.load_lora_weights( | |
self.style_models, | |
weight_name= f"{LoRA_style_names}.safetensors", | |
adapter_name= LoRA_style_names | |
) | |
self.pipeline.load_lora_weights( | |
self.functional_models, | |
weight_name= f"{LoRA_functional_names}.safetensors", | |
adapter_name= LoRA_functional_names | |
) | |
self.pipeline.load_lora_weights( | |
self.enhancement, | |
weight_name= f"realistic.safetensors", | |
adapter_name= LoRA_enhancement_names | |
) | |
print(f"Finished loadded 3 LoRA weights {LoRA_style_names}, {LoRA_functional_names} and {LoRA_enhancement_names}") | |
self.pipeline.set_adapters(adapter_names= LoRA_names, adapter_weights= adapter_weights) | |
print(f"Adapted 3 lora weights") | |
# Transform the image into a depth map that is compatible with ControlNet | |
conditional_image = self.img2canny(input_image) | |
# Setup the pipeline then generate image | |
image = self.pipeline( | |
prompt= first_prompt, | |
prompt_2= second_prompt, | |
negative_prompt= first_negprompt, | |
negative_prompt_2= second_negprompt, | |
image= conditional_image, | |
controlnet_conditioning_scale= controlnet_condition, | |
num_inference_steps= render_speed, | |
guidance_scale= guidance_scale | |
).images[0] | |
return image | |
if __name__ == '__main__': | |
print("Loading") | |
pipe = ArchIntelligent() | |
print("Finished") |