unimatch / utils /visualization.py
haofeixu's picture
unimatch demo
9ef8038
import torch
import torch.utils.data
import numpy as np
import torchvision.utils as vutils
import cv2
from matplotlib.cm import get_cmap
import matplotlib as mpl
import matplotlib.cm as cm
def vis_disparity(disp, return_rgb=False):
disp_vis = (disp - disp.min()) / (disp.max() - disp.min()) * 255.0
disp_vis = disp_vis.astype("uint8")
disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO)
if return_rgb:
disp_vis = cv2.cvtColor(disp_vis, cv2.COLOR_BGR2RGB)
return disp_vis
def gen_error_colormap():
cols = np.array(
[[0 / 3.0, 0.1875 / 3.0, 49, 54, 149],
[0.1875 / 3.0, 0.375 / 3.0, 69, 117, 180],
[0.375 / 3.0, 0.75 / 3.0, 116, 173, 209],
[0.75 / 3.0, 1.5 / 3.0, 171, 217, 233],
[1.5 / 3.0, 3 / 3.0, 224, 243, 248],
[3 / 3.0, 6 / 3.0, 254, 224, 144],
[6 / 3.0, 12 / 3.0, 253, 174, 97],
[12 / 3.0, 24 / 3.0, 244, 109, 67],
[24 / 3.0, 48 / 3.0, 215, 48, 39],
[48 / 3.0, np.inf, 165, 0, 38]], dtype=np.float32)
cols[:, 2: 5] /= 255.
return cols
def disp_error_img(D_est_tensor, D_gt_tensor, abs_thres=3., rel_thres=0.05, dilate_radius=1):
D_gt_np = D_gt_tensor.detach().cpu().numpy()
D_est_np = D_est_tensor.detach().cpu().numpy()
B, H, W = D_gt_np.shape
# valid mask
mask = D_gt_np > 0
# error in percentage. When error <= 1, the pixel is valid since <= 3px & 5%
error = np.abs(D_gt_np - D_est_np)
error[np.logical_not(mask)] = 0
error[mask] = np.minimum(error[mask] / abs_thres, (error[mask] / D_gt_np[mask]) / rel_thres)
# get colormap
cols = gen_error_colormap()
# create error image
error_image = np.zeros([B, H, W, 3], dtype=np.float32)
for i in range(cols.shape[0]):
error_image[np.logical_and(error >= cols[i][0], error < cols[i][1])] = cols[i, 2:]
# TODO: imdilate
# error_image = cv2.imdilate(D_err, strel('disk', dilate_radius));
error_image[np.logical_not(mask)] = 0.
# show color tag in the top-left cornor of the image
for i in range(cols.shape[0]):
distance = 20
error_image[:, :10, i * distance:(i + 1) * distance, :] = cols[i, 2:]
return torch.from_numpy(np.ascontiguousarray(error_image.transpose([0, 3, 1, 2])))
def save_images(logger, mode_tag, images_dict, global_step):
images_dict = tensor2numpy(images_dict)
for tag, values in images_dict.items():
if not isinstance(values, list) and not isinstance(values, tuple):
values = [values]
for idx, value in enumerate(values):
if len(value.shape) == 3:
value = value[:, np.newaxis, :, :]
value = value[:1]
value = torch.from_numpy(value)
image_name = '{}/{}'.format(mode_tag, tag)
if len(values) > 1:
image_name = image_name + "_" + str(idx)
logger.add_image(image_name, vutils.make_grid(value, padding=0, nrow=1, normalize=True, scale_each=True),
global_step)
def tensor2numpy(var_dict):
for key, vars in var_dict.items():
if isinstance(vars, np.ndarray):
var_dict[key] = vars
elif isinstance(vars, torch.Tensor):
var_dict[key] = vars.data.cpu().numpy()
else:
raise NotImplementedError("invalid input type for tensor2numpy")
return var_dict
def viz_depth_tensor_from_monodepth2(disp, return_numpy=False, colormap='plasma'):
# visualize inverse depth
assert isinstance(disp, torch.Tensor)
disp = disp.numpy()
vmax = np.percentile(disp, 95)
normalizer = mpl.colors.Normalize(vmin=disp.min(), vmax=vmax)
mapper = cm.ScalarMappable(norm=normalizer, cmap=colormap)
colormapped_im = (mapper.to_rgba(disp)[:, :, :3] * 255).astype(np.uint8) # [H, W, 3]
if return_numpy:
return colormapped_im
viz = torch.from_numpy(colormapped_im).permute(2, 0, 1) # [3, H, W]
return viz