haofeixu commited on
Commit
9ef8038
1 Parent(s): f5d2232

unimatch demo

Browse files
app.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from PIL import Image
5
+ import gradio as gr
6
+
7
+ from unimatch.unimatch import UniMatch
8
+ from utils.flow_viz import flow_to_image
9
+ from dataloader.stereo import transforms
10
+ from utils.visualization import vis_disparity
11
+
12
+ IMAGENET_MEAN = [0.485, 0.456, 0.406]
13
+ IMAGENET_STD = [0.229, 0.224, 0.225]
14
+
15
+
16
+ @torch.no_grad()
17
+ def inference(image1, image2, task='flow'):
18
+ """Inference on an image pair for optical flow or stereo disparity prediction"""
19
+
20
+ model = UniMatch(feature_channels=128,
21
+ num_scales=2,
22
+ upsample_factor=4,
23
+ ffn_dim_expansion=4,
24
+ num_transformer_layers=6,
25
+ reg_refine=True,
26
+ task=task)
27
+
28
+ model.eval()
29
+
30
+ if task == 'flow':
31
+ checkpoint_path = 'pretrained/gmflow-scale2-regrefine6-mixdata-train320x576-4e7b215d.pth'
32
+ else:
33
+ checkpoint_path = 'pretrained/gmstereo-scale2-regrefine3-resumeflowthings-mixdata-train320x640-ft640x960-e4e291fd.pth'
34
+
35
+ checkpoint_flow = torch.load(checkpoint_path)
36
+ model.load_state_dict(checkpoint_flow['model'], strict=True)
37
+
38
+ padding_factor = 32
39
+ attn_type = 'swin' if task == 'flow' else 'self_swin2d_cross_swin1d'
40
+ attn_splits_list = [2, 8]
41
+ corr_radius_list = [-1, 4]
42
+ prop_radius_list = [-1, 1]
43
+ num_reg_refine = 6 if task == 'flow' else 3
44
+
45
+ # smaller inference size for faster speed
46
+ max_inference_size = [384, 768] if task == 'flow' else [640, 960]
47
+
48
+ transpose_img = False
49
+
50
+ image1 = np.array(image1).astype(np.float32)
51
+ image2 = np.array(image2).astype(np.float32)
52
+
53
+ if len(image1.shape) == 2: # gray image
54
+ image1 = np.tile(image1[..., None], (1, 1, 3))
55
+ image2 = np.tile(image2[..., None], (1, 1, 3))
56
+ else:
57
+ image1 = image1[..., :3]
58
+ image2 = image2[..., :3]
59
+
60
+ if task == 'flow':
61
+ image1 = torch.from_numpy(image1).permute(2, 0, 1).float().unsqueeze(0)
62
+ image2 = torch.from_numpy(image2).permute(2, 0, 1).float().unsqueeze(0)
63
+ else:
64
+ val_transform_list = [transforms.ToTensor(),
65
+ transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
66
+ ]
67
+
68
+ val_transform = transforms.Compose(val_transform_list)
69
+
70
+ sample = {'left': image1, 'right': image2}
71
+ sample = val_transform(sample)
72
+
73
+ image1 = sample['left'].unsqueeze(0) # [1, 3, H, W]
74
+ image2 = sample['right'].unsqueeze(0) # [1, 3, H, W]
75
+
76
+ # the model is trained with size: width > height
77
+ if task == 'flow' and image1.size(-2) > image1.size(-1):
78
+ image1 = torch.transpose(image1, -2, -1)
79
+ image2 = torch.transpose(image2, -2, -1)
80
+ transpose_img = True
81
+
82
+ nearest_size = [int(np.ceil(image1.size(-2) / padding_factor)) * padding_factor,
83
+ int(np.ceil(image1.size(-1) / padding_factor)) * padding_factor]
84
+
85
+ inference_size = [min(max_inference_size[0], nearest_size[0]), min(max_inference_size[1], nearest_size[1])]
86
+
87
+ assert isinstance(inference_size, list) or isinstance(inference_size, tuple)
88
+ ori_size = image1.shape[-2:]
89
+
90
+ # resize before inference
91
+ if inference_size[0] != ori_size[0] or inference_size[1] != ori_size[1]:
92
+ image1 = F.interpolate(image1, size=inference_size, mode='bilinear',
93
+ align_corners=True)
94
+ image2 = F.interpolate(image2, size=inference_size, mode='bilinear',
95
+ align_corners=True)
96
+
97
+ results_dict = model(image1, image2,
98
+ attn_type=attn_type,
99
+ attn_splits_list=attn_splits_list,
100
+ corr_radius_list=corr_radius_list,
101
+ prop_radius_list=prop_radius_list,
102
+ num_reg_refine=num_reg_refine,
103
+ task=task,
104
+ )
105
+
106
+ flow_pr = results_dict['flow_preds'][-1] # [1, 2, H, W] or [1, H, W]
107
+
108
+ # resize back
109
+ if task == 'flow':
110
+ if inference_size[0] != ori_size[0] or inference_size[1] != ori_size[1]:
111
+ flow_pr = F.interpolate(flow_pr, size=ori_size, mode='bilinear',
112
+ align_corners=True)
113
+ flow_pr[:, 0] = flow_pr[:, 0] * ori_size[-1] / inference_size[-1]
114
+ flow_pr[:, 1] = flow_pr[:, 1] * ori_size[-2] / inference_size[-2]
115
+ else:
116
+ if inference_size[0] != ori_size[0] or inference_size[1] != ori_size[1]:
117
+ pred_disp = F.interpolate(flow_pr.unsqueeze(1), size=ori_size,
118
+ mode='bilinear',
119
+ align_corners=True).squeeze(1) # [1, H, W]
120
+ pred_disp = pred_disp * ori_size[-1] / float(inference_size[-1])
121
+
122
+ if task == 'flow':
123
+ if transpose_img:
124
+ flow_pr = torch.transpose(flow_pr, -2, -1)
125
+
126
+ flow = flow_pr[0].permute(1, 2, 0).cpu().numpy() # [H, W, 2]
127
+
128
+ output = flow_to_image(flow) # [H, W, 3]
129
+ else:
130
+ disp = pred_disp[0].cpu().numpy()
131
+
132
+ output = vis_disparity(disp, return_rgb=True)
133
+
134
+ return Image.fromarray(output)
135
+
136
+
137
+ title = "UniMatch"
138
+
139
+ description = "<p style='text-align: center'>Optical flow and stereo matching demo for <a href='https://haofeixu.github.io/unimatch/' target='_blank'>Unifying Flow, Stereo and Depth Estimation</a> | <a href='https://arxiv.org/abs/2211.05783' target='_blank'>Paper</a> | <a href='https://github.com/autonomousvision/unimatch' target='_blank'>Code</a> | <a href='https://colab.research.google.com/drive/1r5m-xVy3Kw60U-m5VB-aQ98oqqg_6cab?usp=sharing' target='_blank'>Colab</a><br>Simply upload your images or click one of the provided examples.<br>The <strong>first three</strong> examples are video frames for <strong>flow</strong> task, and the <strong>last three</strong> are stereo pairs for <strong>stereo</strong> task.<br><strong>Select the task type according to your input images</strong>.</p>"
140
+
141
+ examples = [
142
+ ['demo/flow_kitti_test_000197_10.png', 'demo/flow_kitti_test_000197_11.png'],
143
+ ['demo/flow_sintel_cave_3_frame_0049.png', 'demo/flow_sintel_cave_3_frame_0050.png'],
144
+ ['demo/flow_davis_skate-jump_00059.jpg', 'demo/flow_davis_skate-jump_00060.jpg'],
145
+ ['demo/stereo_drivingstereo_test_2018-07-11-14-48-52_2018-07-11-14-58-34-673_left.jpg',
146
+ 'demo/stereo_drivingstereo_test_2018-07-11-14-48-52_2018-07-11-14-58-34-673_right.jpg'],
147
+ ['demo/stereo_middlebury_plants_im0.png', 'demo/stereo_middlebury_plants_im1.png'],
148
+ ['demo/stereo_holopix_left.png', 'demo/stereo_holopix_right.png']
149
+ ]
150
+
151
+ gr.Interface(
152
+ inference,
153
+ [gr.Image(type="pil", label="Image1"), gr.Image(type="pil", label="Image2"), gr.Radio(choices=['flow', 'stereo'], value='flow', label='Task')],
154
+ gr.Image(type="pil", label="Flow/Disparity"),
155
+ title=title,
156
+ description=description,
157
+ examples=examples,
158
+ thumbnail="https://haofeixu.github.io/unimatch/resources/teaser.svg",
159
+ allow_flagging="auto",
160
+ ).launch(debug=True)
dataloader/__init__.py ADDED
File without changes
dataloader/stereo/transforms.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import division
2
+ import torch
3
+ import numpy as np
4
+ from PIL import Image
5
+ import torchvision.transforms.functional as F
6
+ import random
7
+ import cv2
8
+
9
+
10
+ class Compose(object):
11
+ def __init__(self, transforms):
12
+ self.transforms = transforms
13
+
14
+ def __call__(self, sample):
15
+ for t in self.transforms:
16
+ sample = t(sample)
17
+ return sample
18
+
19
+
20
+ class ToTensor(object):
21
+ """Convert numpy array to torch tensor"""
22
+
23
+ def __init__(self, no_normalize=False):
24
+ self.no_normalize = no_normalize
25
+
26
+ def __call__(self, sample):
27
+ left = np.transpose(sample['left'], (2, 0, 1)) # [3, H, W]
28
+ if self.no_normalize:
29
+ sample['left'] = torch.from_numpy(left)
30
+ else:
31
+ sample['left'] = torch.from_numpy(left) / 255.
32
+ right = np.transpose(sample['right'], (2, 0, 1))
33
+
34
+ if self.no_normalize:
35
+ sample['right'] = torch.from_numpy(right)
36
+ else:
37
+ sample['right'] = torch.from_numpy(right) / 255.
38
+
39
+ # disp = np.expand_dims(sample['disp'], axis=0) # [1, H, W]
40
+ if 'disp' in sample.keys():
41
+ disp = sample['disp'] # [H, W]
42
+ sample['disp'] = torch.from_numpy(disp)
43
+
44
+ return sample
45
+
46
+
47
+ class Normalize(object):
48
+ """Normalize image, with type tensor"""
49
+
50
+ def __init__(self, mean, std):
51
+ self.mean = mean
52
+ self.std = std
53
+
54
+ def __call__(self, sample):
55
+
56
+ norm_keys = ['left', 'right']
57
+
58
+ for key in norm_keys:
59
+ # Images have converted to tensor, with shape [C, H, W]
60
+ for t, m, s in zip(sample[key], self.mean, self.std):
61
+ t.sub_(m).div_(s)
62
+
63
+ return sample
64
+
65
+
66
+ class RandomCrop(object):
67
+ def __init__(self, img_height, img_width):
68
+ self.img_height = img_height
69
+ self.img_width = img_width
70
+
71
+ def __call__(self, sample):
72
+ ori_height, ori_width = sample['left'].shape[:2]
73
+
74
+ # pad zero when crop size is larger than original image size
75
+ if self.img_height > ori_height or self.img_width > ori_width:
76
+
77
+ # can be used for only pad one side
78
+ top_pad = max(self.img_height - ori_height, 0)
79
+ right_pad = max(self.img_width - ori_width, 0)
80
+
81
+ # try edge padding
82
+ sample['left'] = np.lib.pad(sample['left'],
83
+ ((top_pad, 0), (0, right_pad), (0, 0)),
84
+ mode='edge')
85
+ sample['right'] = np.lib.pad(sample['right'],
86
+ ((top_pad, 0), (0, right_pad), (0, 0)),
87
+ mode='edge')
88
+
89
+ if 'disp' in sample.keys():
90
+ sample['disp'] = np.lib.pad(sample['disp'],
91
+ ((top_pad, 0), (0, right_pad)),
92
+ mode='constant',
93
+ constant_values=0)
94
+
95
+ # update image resolution
96
+ ori_height, ori_width = sample['left'].shape[:2]
97
+
98
+ assert self.img_height <= ori_height and self.img_width <= ori_width
99
+
100
+ # Training: random crop
101
+ self.offset_x = np.random.randint(ori_width - self.img_width + 1)
102
+
103
+ start_height = 0
104
+ assert ori_height - start_height >= self.img_height
105
+
106
+ self.offset_y = np.random.randint(start_height, ori_height - self.img_height + 1)
107
+
108
+ sample['left'] = self.crop_img(sample['left'])
109
+ sample['right'] = self.crop_img(sample['right'])
110
+ if 'disp' in sample.keys():
111
+ sample['disp'] = self.crop_img(sample['disp'])
112
+
113
+ return sample
114
+
115
+ def crop_img(self, img):
116
+ return img[self.offset_y:self.offset_y + self.img_height,
117
+ self.offset_x:self.offset_x + self.img_width]
118
+
119
+
120
+ class RandomVerticalFlip(object):
121
+ """Randomly vertically filps"""
122
+
123
+ def __call__(self, sample):
124
+ if np.random.random() < 0.5:
125
+ sample['left'] = np.copy(np.flipud(sample['left']))
126
+ sample['right'] = np.copy(np.flipud(sample['right']))
127
+
128
+ sample['disp'] = np.copy(np.flipud(sample['disp']))
129
+
130
+ return sample
131
+
132
+
133
+ class ToPILImage(object):
134
+
135
+ def __call__(self, sample):
136
+ sample['left'] = Image.fromarray(sample['left'].astype('uint8'))
137
+ sample['right'] = Image.fromarray(sample['right'].astype('uint8'))
138
+
139
+ return sample
140
+
141
+
142
+ class ToNumpyArray(object):
143
+
144
+ def __call__(self, sample):
145
+ sample['left'] = np.array(sample['left']).astype(np.float32)
146
+ sample['right'] = np.array(sample['right']).astype(np.float32)
147
+
148
+ return sample
149
+
150
+
151
+ # Random coloring
152
+ class RandomContrast(object):
153
+ """Random contrast"""
154
+
155
+ def __init__(self,
156
+ asymmetric_color_aug=True,
157
+ ):
158
+
159
+ self.asymmetric_color_aug = asymmetric_color_aug
160
+
161
+ def __call__(self, sample):
162
+ if np.random.random() < 0.5:
163
+ contrast_factor = np.random.uniform(0.8, 1.2)
164
+
165
+ sample['left'] = F.adjust_contrast(sample['left'], contrast_factor)
166
+
167
+ if self.asymmetric_color_aug and np.random.random() < 0.5:
168
+ contrast_factor = np.random.uniform(0.8, 1.2)
169
+
170
+ sample['right'] = F.adjust_contrast(sample['right'], contrast_factor)
171
+
172
+ return sample
173
+
174
+
175
+ class RandomGamma(object):
176
+
177
+ def __init__(self,
178
+ asymmetric_color_aug=True,
179
+ ):
180
+
181
+ self.asymmetric_color_aug = asymmetric_color_aug
182
+
183
+ def __call__(self, sample):
184
+ if np.random.random() < 0.5:
185
+ gamma = np.random.uniform(0.7, 1.5) # adopted from FlowNet
186
+
187
+ sample['left'] = F.adjust_gamma(sample['left'], gamma)
188
+
189
+ if self.asymmetric_color_aug and np.random.random() < 0.5:
190
+ gamma = np.random.uniform(0.7, 1.5) # adopted from FlowNet
191
+
192
+ sample['right'] = F.adjust_gamma(sample['right'], gamma)
193
+
194
+ return sample
195
+
196
+
197
+ class RandomBrightness(object):
198
+
199
+ def __init__(self,
200
+ asymmetric_color_aug=True,
201
+ ):
202
+
203
+ self.asymmetric_color_aug = asymmetric_color_aug
204
+
205
+ def __call__(self, sample):
206
+ if np.random.random() < 0.5:
207
+ brightness = np.random.uniform(0.5, 2.0)
208
+
209
+ sample['left'] = F.adjust_brightness(sample['left'], brightness)
210
+
211
+ if self.asymmetric_color_aug and np.random.random() < 0.5:
212
+ brightness = np.random.uniform(0.5, 2.0)
213
+
214
+ sample['right'] = F.adjust_brightness(sample['right'], brightness)
215
+
216
+ return sample
217
+
218
+
219
+ class RandomHue(object):
220
+
221
+ def __init__(self,
222
+ asymmetric_color_aug=True,
223
+ ):
224
+
225
+ self.asymmetric_color_aug = asymmetric_color_aug
226
+
227
+ def __call__(self, sample):
228
+ if np.random.random() < 0.5:
229
+ hue = np.random.uniform(-0.1, 0.1)
230
+
231
+ sample['left'] = F.adjust_hue(sample['left'], hue)
232
+
233
+ if self.asymmetric_color_aug and np.random.random() < 0.5:
234
+ hue = np.random.uniform(-0.1, 0.1)
235
+
236
+ sample['right'] = F.adjust_hue(sample['right'], hue)
237
+
238
+ return sample
239
+
240
+
241
+ class RandomSaturation(object):
242
+
243
+ def __init__(self,
244
+ asymmetric_color_aug=True,
245
+ ):
246
+
247
+ self.asymmetric_color_aug = asymmetric_color_aug
248
+
249
+ def __call__(self, sample):
250
+ if np.random.random() < 0.5:
251
+ saturation = np.random.uniform(0.8, 1.2)
252
+
253
+ sample['left'] = F.adjust_saturation(sample['left'], saturation)
254
+
255
+ if self.asymmetric_color_aug and np.random.random() < 0.5:
256
+ saturation = np.random.uniform(0.8, 1.2)
257
+
258
+ sample['right'] = F.adjust_saturation(sample['right'], saturation)
259
+
260
+ return sample
261
+
262
+
263
+ class RandomColor(object):
264
+
265
+ def __init__(self,
266
+ asymmetric_color_aug=True,
267
+ ):
268
+
269
+ self.asymmetric_color_aug = asymmetric_color_aug
270
+
271
+ def __call__(self, sample):
272
+ transforms = [RandomContrast(asymmetric_color_aug=self.asymmetric_color_aug),
273
+ RandomGamma(asymmetric_color_aug=self.asymmetric_color_aug),
274
+ RandomBrightness(asymmetric_color_aug=self.asymmetric_color_aug),
275
+ RandomHue(asymmetric_color_aug=self.asymmetric_color_aug),
276
+ RandomSaturation(asymmetric_color_aug=self.asymmetric_color_aug)]
277
+
278
+ sample = ToPILImage()(sample)
279
+
280
+ if np.random.random() < 0.5:
281
+ # A single transform
282
+ t = random.choice(transforms)
283
+ sample = t(sample)
284
+ else:
285
+ # Combination of transforms
286
+ # Random order
287
+ random.shuffle(transforms)
288
+ for t in transforms:
289
+ sample = t(sample)
290
+
291
+ sample = ToNumpyArray()(sample)
292
+
293
+ return sample
294
+
295
+
296
+ class RandomScale(object):
297
+ def __init__(self,
298
+ min_scale=-0.4,
299
+ max_scale=0.4,
300
+ crop_width=512,
301
+ nearest_interp=False, # for sparse gt
302
+ ):
303
+ self.min_scale = min_scale
304
+ self.max_scale = max_scale
305
+ self.crop_width = crop_width
306
+ self.nearest_interp = nearest_interp
307
+
308
+ def __call__(self, sample):
309
+ if np.random.rand() < 0.5:
310
+ h, w = sample['disp'].shape
311
+
312
+ scale_x = 2 ** np.random.uniform(self.min_scale, self.max_scale)
313
+
314
+ scale_x = np.clip(scale_x, self.crop_width / float(w), None)
315
+
316
+ # only random scale x axis
317
+ sample['left'] = cv2.resize(sample['left'], None, fx=scale_x, fy=1., interpolation=cv2.INTER_LINEAR)
318
+ sample['right'] = cv2.resize(sample['right'], None, fx=scale_x, fy=1., interpolation=cv2.INTER_LINEAR)
319
+
320
+ sample['disp'] = cv2.resize(
321
+ sample['disp'], None, fx=scale_x, fy=1.,
322
+ interpolation=cv2.INTER_LINEAR if not self.nearest_interp else cv2.INTER_NEAREST
323
+ ) * scale_x
324
+
325
+ if 'pseudo_disp' in sample and sample['pseudo_disp'] is not None:
326
+ sample['pseudo_disp'] = cv2.resize(sample['pseudo_disp'], None, fx=scale_x, fy=1.,
327
+ interpolation=cv2.INTER_LINEAR) * scale_x
328
+
329
+ return sample
330
+
331
+
332
+ class Resize(object):
333
+ def __init__(self,
334
+ scale_x=1,
335
+ scale_y=1,
336
+ nearest_interp=True, # for sparse gt
337
+ ):
338
+ """
339
+ Resize low-resolution data to high-res for mixed dataset training
340
+ """
341
+ self.scale_x = scale_x
342
+ self.scale_y = scale_y
343
+ self.nearest_interp = nearest_interp
344
+
345
+ def __call__(self, sample):
346
+ scale_x = self.scale_x
347
+ scale_y = self.scale_y
348
+
349
+ sample['left'] = cv2.resize(sample['left'], None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
350
+ sample['right'] = cv2.resize(sample['right'], None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
351
+
352
+ sample['disp'] = cv2.resize(
353
+ sample['disp'], None, fx=scale_x, fy=scale_y,
354
+ interpolation=cv2.INTER_LINEAR if not self.nearest_interp else cv2.INTER_NEAREST
355
+ ) * scale_x
356
+
357
+ return sample
358
+
359
+
360
+ class RandomGrayscale(object):
361
+ def __init__(self, p=0.2):
362
+ self.p = p
363
+
364
+ def __call__(self, sample):
365
+ if np.random.random() < self.p:
366
+ sample = ToPILImage()(sample)
367
+
368
+ # only supported in higher version pytorch
369
+ # default output channels is 1
370
+ sample['left'] = F.rgb_to_grayscale(sample['left'], num_output_channels=3)
371
+ sample['right'] = F.rgb_to_grayscale(sample['right'], num_output_channels=3)
372
+
373
+ sample = ToNumpyArray()(sample)
374
+
375
+ return sample
376
+
377
+
378
+ class RandomRotateShiftRight(object):
379
+ def __init__(self, p=0.5):
380
+ self.p = p
381
+
382
+ def __call__(self, sample):
383
+ if np.random.random() < self.p:
384
+ angle, pixel = 0.1, 2
385
+ px = np.random.uniform(-pixel, pixel)
386
+ ag = np.random.uniform(-angle, angle)
387
+
388
+ right_img = sample['right']
389
+
390
+ image_center = (
391
+ np.random.uniform(0, right_img.shape[0]),
392
+ np.random.uniform(0, right_img.shape[1])
393
+ )
394
+
395
+ rot_mat = cv2.getRotationMatrix2D(image_center, ag, 1.0)
396
+ right_img = cv2.warpAffine(
397
+ right_img, rot_mat, right_img.shape[1::-1], flags=cv2.INTER_LINEAR
398
+ )
399
+ trans_mat = np.float32([[1, 0, 0], [0, 1, px]])
400
+ right_img = cv2.warpAffine(
401
+ right_img, trans_mat, right_img.shape[1::-1], flags=cv2.INTER_LINEAR
402
+ )
403
+
404
+ sample['right'] = right_img
405
+
406
+ return sample
407
+
408
+
409
+ class RandomOcclusion(object):
410
+ def __init__(self, p=0.5,
411
+ occlusion_mask_zero=False):
412
+ self.p = p
413
+ self.occlusion_mask_zero = occlusion_mask_zero
414
+
415
+ def __call__(self, sample):
416
+ bounds = [50, 100]
417
+ if np.random.random() < self.p:
418
+ img2 = sample['right']
419
+ ht, wd = img2.shape[:2]
420
+
421
+ if self.occlusion_mask_zero:
422
+ mean_color = 0
423
+ else:
424
+ mean_color = np.mean(img2.reshape(-1, 3), axis=0)
425
+
426
+ x0 = np.random.randint(0, wd)
427
+ y0 = np.random.randint(0, ht)
428
+ dx = np.random.randint(bounds[0], bounds[1])
429
+ dy = np.random.randint(bounds[0], bounds[1])
430
+ img2[y0:y0 + dy, x0:x0 + dx, :] = mean_color
431
+
432
+ sample['right'] = img2
433
+
434
+ return sample
demo/flow_davis_skate-jump_00059.jpg ADDED
demo/flow_davis_skate-jump_00060.jpg ADDED
demo/flow_kitti_test_000197_10.png ADDED
demo/flow_kitti_test_000197_11.png ADDED
demo/flow_sintel_cave_3_frame_0049.png ADDED
demo/flow_sintel_cave_3_frame_0050.png ADDED
demo/stereo_drivingstereo_test_2018-07-11-14-48-52_2018-07-11-14-58-34-673_left.jpg ADDED
demo/stereo_drivingstereo_test_2018-07-11-14-48-52_2018-07-11-14-58-34-673_right.jpg ADDED
pretrained/tmp.txt ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ matplotlib
4
+ opencv-python
5
+ pillow
unimatch/__init__.py ADDED
File without changes
unimatch/attention.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .utils import split_feature, merge_splits, split_feature_1d, merge_splits_1d
6
+
7
+
8
+ def single_head_full_attention(q, k, v):
9
+ # q, k, v: [B, L, C]
10
+ assert q.dim() == k.dim() == v.dim() == 3
11
+
12
+ scores = torch.matmul(q, k.permute(0, 2, 1)) / (q.size(2) ** .5) # [B, L, L]
13
+ attn = torch.softmax(scores, dim=2) # [B, L, L]
14
+ out = torch.matmul(attn, v) # [B, L, C]
15
+
16
+ return out
17
+
18
+
19
+ def single_head_full_attention_1d(q, k, v,
20
+ h=None,
21
+ w=None,
22
+ ):
23
+ # q, k, v: [B, L, C]
24
+
25
+ assert h is not None and w is not None
26
+ assert q.size(1) == h * w
27
+
28
+ b, _, c = q.size()
29
+
30
+ q = q.view(b, h, w, c) # [B, H, W, C]
31
+ k = k.view(b, h, w, c)
32
+ v = v.view(b, h, w, c)
33
+
34
+ scale_factor = c ** 0.5
35
+
36
+ scores = torch.matmul(q, k.permute(0, 1, 3, 2)) / scale_factor # [B, H, W, W]
37
+
38
+ attn = torch.softmax(scores, dim=-1)
39
+
40
+ out = torch.matmul(attn, v).view(b, -1, c) # [B, H*W, C]
41
+
42
+ return out
43
+
44
+
45
+ def single_head_split_window_attention(q, k, v,
46
+ num_splits=1,
47
+ with_shift=False,
48
+ h=None,
49
+ w=None,
50
+ attn_mask=None,
51
+ ):
52
+ # ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
53
+ # q, k, v: [B, L, C]
54
+ assert q.dim() == k.dim() == v.dim() == 3
55
+
56
+ assert h is not None and w is not None
57
+ assert q.size(1) == h * w
58
+
59
+ b, _, c = q.size()
60
+
61
+ b_new = b * num_splits * num_splits
62
+
63
+ window_size_h = h // num_splits
64
+ window_size_w = w // num_splits
65
+
66
+ q = q.view(b, h, w, c) # [B, H, W, C]
67
+ k = k.view(b, h, w, c)
68
+ v = v.view(b, h, w, c)
69
+
70
+ scale_factor = c ** 0.5
71
+
72
+ if with_shift:
73
+ assert attn_mask is not None # compute once
74
+ shift_size_h = window_size_h // 2
75
+ shift_size_w = window_size_w // 2
76
+
77
+ q = torch.roll(q, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
78
+ k = torch.roll(k, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
79
+ v = torch.roll(v, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
80
+
81
+ q = split_feature(q, num_splits=num_splits, channel_last=True) # [B*K*K, H/K, W/K, C]
82
+ k = split_feature(k, num_splits=num_splits, channel_last=True)
83
+ v = split_feature(v, num_splits=num_splits, channel_last=True)
84
+
85
+ scores = torch.matmul(q.view(b_new, -1, c), k.view(b_new, -1, c).permute(0, 2, 1)
86
+ ) / scale_factor # [B*K*K, H/K*W/K, H/K*W/K]
87
+
88
+ if with_shift:
89
+ scores += attn_mask.repeat(b, 1, 1)
90
+
91
+ attn = torch.softmax(scores, dim=-1)
92
+
93
+ out = torch.matmul(attn, v.view(b_new, -1, c)) # [B*K*K, H/K*W/K, C]
94
+
95
+ out = merge_splits(out.view(b_new, h // num_splits, w // num_splits, c),
96
+ num_splits=num_splits, channel_last=True) # [B, H, W, C]
97
+
98
+ # shift back
99
+ if with_shift:
100
+ out = torch.roll(out, shifts=(shift_size_h, shift_size_w), dims=(1, 2))
101
+
102
+ out = out.view(b, -1, c)
103
+
104
+ return out
105
+
106
+
107
+ def single_head_split_window_attention_1d(q, k, v,
108
+ relative_position_bias=None,
109
+ num_splits=1,
110
+ with_shift=False,
111
+ h=None,
112
+ w=None,
113
+ attn_mask=None,
114
+ ):
115
+ # q, k, v: [B, L, C]
116
+
117
+ assert h is not None and w is not None
118
+ assert q.size(1) == h * w
119
+
120
+ b, _, c = q.size()
121
+
122
+ b_new = b * num_splits * h
123
+
124
+ window_size_w = w // num_splits
125
+
126
+ q = q.view(b * h, w, c) # [B*H, W, C]
127
+ k = k.view(b * h, w, c)
128
+ v = v.view(b * h, w, c)
129
+
130
+ scale_factor = c ** 0.5
131
+
132
+ if with_shift:
133
+ assert attn_mask is not None # compute once
134
+ shift_size_w = window_size_w // 2
135
+
136
+ q = torch.roll(q, shifts=-shift_size_w, dims=1)
137
+ k = torch.roll(k, shifts=-shift_size_w, dims=1)
138
+ v = torch.roll(v, shifts=-shift_size_w, dims=1)
139
+
140
+ q = split_feature_1d(q, num_splits=num_splits) # [B*H*K, W/K, C]
141
+ k = split_feature_1d(k, num_splits=num_splits)
142
+ v = split_feature_1d(v, num_splits=num_splits)
143
+
144
+ scores = torch.matmul(q.view(b_new, -1, c), k.view(b_new, -1, c).permute(0, 2, 1)
145
+ ) / scale_factor # [B*H*K, W/K, W/K]
146
+
147
+ if with_shift:
148
+ # attn_mask: [K, W/K, W/K]
149
+ scores += attn_mask.repeat(b * h, 1, 1) # [B*H*K, W/K, W/K]
150
+
151
+ attn = torch.softmax(scores, dim=-1)
152
+
153
+ out = torch.matmul(attn, v.view(b_new, -1, c)) # [B*H*K, W/K, C]
154
+
155
+ out = merge_splits_1d(out, h, num_splits=num_splits) # [B, H, W, C]
156
+
157
+ # shift back
158
+ if with_shift:
159
+ out = torch.roll(out, shifts=shift_size_w, dims=2)
160
+
161
+ out = out.view(b, -1, c)
162
+
163
+ return out
164
+
165
+
166
+ class SelfAttnPropagation(nn.Module):
167
+ """
168
+ flow propagation with self-attention on feature
169
+ query: feature0, key: feature0, value: flow
170
+ """
171
+
172
+ def __init__(self, in_channels,
173
+ **kwargs,
174
+ ):
175
+ super(SelfAttnPropagation, self).__init__()
176
+
177
+ self.q_proj = nn.Linear(in_channels, in_channels)
178
+ self.k_proj = nn.Linear(in_channels, in_channels)
179
+
180
+ for p in self.parameters():
181
+ if p.dim() > 1:
182
+ nn.init.xavier_uniform_(p)
183
+
184
+ def forward(self, feature0, flow,
185
+ local_window_attn=False,
186
+ local_window_radius=1,
187
+ **kwargs,
188
+ ):
189
+ # q, k: feature [B, C, H, W], v: flow [B, 2, H, W]
190
+ if local_window_attn:
191
+ return self.forward_local_window_attn(feature0, flow,
192
+ local_window_radius=local_window_radius)
193
+
194
+ b, c, h, w = feature0.size()
195
+
196
+ query = feature0.view(b, c, h * w).permute(0, 2, 1) # [B, H*W, C]
197
+
198
+ # a note: the ``correct'' implementation should be:
199
+ # ``query = self.q_proj(query), key = self.k_proj(query)''
200
+ # this problem is observed while cleaning up the code
201
+ # however, this doesn't affect the performance since the projection is a linear operation,
202
+ # thus the two projection matrices for key can be merged
203
+ # so I just leave it as is in order to not re-train all models :)
204
+ query = self.q_proj(query) # [B, H*W, C]
205
+ key = self.k_proj(query) # [B, H*W, C]
206
+
207
+ value = flow.view(b, flow.size(1), h * w).permute(0, 2, 1) # [B, H*W, 2]
208
+
209
+ scores = torch.matmul(query, key.permute(0, 2, 1)) / (c ** 0.5) # [B, H*W, H*W]
210
+ prob = torch.softmax(scores, dim=-1)
211
+
212
+ out = torch.matmul(prob, value) # [B, H*W, 2]
213
+ out = out.view(b, h, w, value.size(-1)).permute(0, 3, 1, 2) # [B, 2, H, W]
214
+
215
+ return out
216
+
217
+ def forward_local_window_attn(self, feature0, flow,
218
+ local_window_radius=1,
219
+ ):
220
+ assert flow.size(1) == 2 or flow.size(1) == 1 # flow or disparity or depth
221
+ assert local_window_radius > 0
222
+
223
+ b, c, h, w = feature0.size()
224
+
225
+ value_channel = flow.size(1)
226
+
227
+ feature0_reshape = self.q_proj(feature0.view(b, c, -1).permute(0, 2, 1)
228
+ ).reshape(b * h * w, 1, c) # [B*H*W, 1, C]
229
+
230
+ kernel_size = 2 * local_window_radius + 1
231
+
232
+ feature0_proj = self.k_proj(feature0.view(b, c, -1).permute(0, 2, 1)).permute(0, 2, 1).reshape(b, c, h, w)
233
+
234
+ feature0_window = F.unfold(feature0_proj, kernel_size=kernel_size,
235
+ padding=local_window_radius) # [B, C*(2R+1)^2), H*W]
236
+
237
+ feature0_window = feature0_window.view(b, c, kernel_size ** 2, h, w).permute(
238
+ 0, 3, 4, 1, 2).reshape(b * h * w, c, kernel_size ** 2) # [B*H*W, C, (2R+1)^2]
239
+
240
+ flow_window = F.unfold(flow, kernel_size=kernel_size,
241
+ padding=local_window_radius) # [B, 2*(2R+1)^2), H*W]
242
+
243
+ flow_window = flow_window.view(b, value_channel, kernel_size ** 2, h, w).permute(
244
+ 0, 3, 4, 2, 1).reshape(b * h * w, kernel_size ** 2, value_channel) # [B*H*W, (2R+1)^2, 2]
245
+
246
+ scores = torch.matmul(feature0_reshape, feature0_window) / (c ** 0.5) # [B*H*W, 1, (2R+1)^2]
247
+
248
+ prob = torch.softmax(scores, dim=-1)
249
+
250
+ out = torch.matmul(prob, flow_window).view(b, h, w, value_channel
251
+ ).permute(0, 3, 1, 2).contiguous() # [B, 2, H, W]
252
+
253
+ return out
unimatch/backbone.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+ from .trident_conv import MultiScaleTridentConv
4
+
5
+
6
+ class ResidualBlock(nn.Module):
7
+ def __init__(self, in_planes, planes, norm_layer=nn.InstanceNorm2d, stride=1, dilation=1,
8
+ ):
9
+ super(ResidualBlock, self).__init__()
10
+
11
+ self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
12
+ dilation=dilation, padding=dilation, stride=stride, bias=False)
13
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
14
+ dilation=dilation, padding=dilation, bias=False)
15
+ self.relu = nn.ReLU(inplace=True)
16
+
17
+ self.norm1 = norm_layer(planes)
18
+ self.norm2 = norm_layer(planes)
19
+ if not stride == 1 or in_planes != planes:
20
+ self.norm3 = norm_layer(planes)
21
+
22
+ if stride == 1 and in_planes == planes:
23
+ self.downsample = None
24
+ else:
25
+ self.downsample = nn.Sequential(
26
+ nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
27
+
28
+ def forward(self, x):
29
+ y = x
30
+ y = self.relu(self.norm1(self.conv1(y)))
31
+ y = self.relu(self.norm2(self.conv2(y)))
32
+
33
+ if self.downsample is not None:
34
+ x = self.downsample(x)
35
+
36
+ return self.relu(x + y)
37
+
38
+
39
+ class CNNEncoder(nn.Module):
40
+ def __init__(self, output_dim=128,
41
+ norm_layer=nn.InstanceNorm2d,
42
+ num_output_scales=1,
43
+ **kwargs,
44
+ ):
45
+ super(CNNEncoder, self).__init__()
46
+ self.num_branch = num_output_scales
47
+
48
+ feature_dims = [64, 96, 128]
49
+
50
+ self.conv1 = nn.Conv2d(3, feature_dims[0], kernel_size=7, stride=2, padding=3, bias=False) # 1/2
51
+ self.norm1 = norm_layer(feature_dims[0])
52
+ self.relu1 = nn.ReLU(inplace=True)
53
+
54
+ self.in_planes = feature_dims[0]
55
+ self.layer1 = self._make_layer(feature_dims[0], stride=1, norm_layer=norm_layer) # 1/2
56
+ self.layer2 = self._make_layer(feature_dims[1], stride=2, norm_layer=norm_layer) # 1/4
57
+
58
+ # highest resolution 1/4 or 1/8
59
+ stride = 2 if num_output_scales == 1 else 1
60
+ self.layer3 = self._make_layer(feature_dims[2], stride=stride,
61
+ norm_layer=norm_layer,
62
+ ) # 1/4 or 1/8
63
+
64
+ self.conv2 = nn.Conv2d(feature_dims[2], output_dim, 1, 1, 0)
65
+
66
+ if self.num_branch > 1:
67
+ if self.num_branch == 4:
68
+ strides = (1, 2, 4, 8)
69
+ elif self.num_branch == 3:
70
+ strides = (1, 2, 4)
71
+ elif self.num_branch == 2:
72
+ strides = (1, 2)
73
+ else:
74
+ raise ValueError
75
+
76
+ self.trident_conv = MultiScaleTridentConv(output_dim, output_dim,
77
+ kernel_size=3,
78
+ strides=strides,
79
+ paddings=1,
80
+ num_branch=self.num_branch,
81
+ )
82
+
83
+ for m in self.modules():
84
+ if isinstance(m, nn.Conv2d):
85
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
86
+ elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
87
+ if m.weight is not None:
88
+ nn.init.constant_(m.weight, 1)
89
+ if m.bias is not None:
90
+ nn.init.constant_(m.bias, 0)
91
+
92
+ def _make_layer(self, dim, stride=1, dilation=1, norm_layer=nn.InstanceNorm2d):
93
+ layer1 = ResidualBlock(self.in_planes, dim, norm_layer=norm_layer, stride=stride, dilation=dilation)
94
+ layer2 = ResidualBlock(dim, dim, norm_layer=norm_layer, stride=1, dilation=dilation)
95
+
96
+ layers = (layer1, layer2)
97
+
98
+ self.in_planes = dim
99
+ return nn.Sequential(*layers)
100
+
101
+ def forward(self, x):
102
+ x = self.conv1(x)
103
+ x = self.norm1(x)
104
+ x = self.relu1(x)
105
+
106
+ x = self.layer1(x) # 1/2
107
+ x = self.layer2(x) # 1/4
108
+ x = self.layer3(x) # 1/8 or 1/4
109
+
110
+ x = self.conv2(x)
111
+
112
+ if self.num_branch > 1:
113
+ out = self.trident_conv([x] * self.num_branch) # high to low res
114
+ else:
115
+ out = [x]
116
+
117
+ return out
unimatch/geometry.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+
5
+ def coords_grid(b, h, w, homogeneous=False, device=None):
6
+ y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W]
7
+
8
+ stacks = [x, y]
9
+
10
+ if homogeneous:
11
+ ones = torch.ones_like(x) # [H, W]
12
+ stacks.append(ones)
13
+
14
+ grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W]
15
+
16
+ grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W]
17
+
18
+ if device is not None:
19
+ grid = grid.to(device)
20
+
21
+ return grid
22
+
23
+
24
+ def generate_window_grid(h_min, h_max, w_min, w_max, len_h, len_w, device=None):
25
+ assert device is not None
26
+
27
+ x, y = torch.meshgrid([torch.linspace(w_min, w_max, len_w, device=device),
28
+ torch.linspace(h_min, h_max, len_h, device=device)],
29
+ )
30
+ grid = torch.stack((x, y), -1).transpose(0, 1).float() # [H, W, 2]
31
+
32
+ return grid
33
+
34
+
35
+ def normalize_coords(coords, h, w):
36
+ # coords: [B, H, W, 2]
37
+ c = torch.Tensor([(w - 1) / 2., (h - 1) / 2.]).float().to(coords.device)
38
+ return (coords - c) / c # [-1, 1]
39
+
40
+
41
+ def bilinear_sample(img, sample_coords, mode='bilinear', padding_mode='zeros', return_mask=False):
42
+ # img: [B, C, H, W]
43
+ # sample_coords: [B, 2, H, W] in image scale
44
+ if sample_coords.size(1) != 2: # [B, H, W, 2]
45
+ sample_coords = sample_coords.permute(0, 3, 1, 2)
46
+
47
+ b, _, h, w = sample_coords.shape
48
+
49
+ # Normalize to [-1, 1]
50
+ x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1
51
+ y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1
52
+
53
+ grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2]
54
+
55
+ img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True)
56
+
57
+ if return_mask:
58
+ mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) # [B, H, W]
59
+
60
+ return img, mask
61
+
62
+ return img
63
+
64
+
65
+ def flow_warp(feature, flow, mask=False, padding_mode='zeros'):
66
+ b, c, h, w = feature.size()
67
+ assert flow.size(1) == 2
68
+
69
+ grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W]
70
+
71
+ return bilinear_sample(feature, grid, padding_mode=padding_mode,
72
+ return_mask=mask)
73
+
74
+
75
+ def forward_backward_consistency_check(fwd_flow, bwd_flow,
76
+ alpha=0.01,
77
+ beta=0.5
78
+ ):
79
+ # fwd_flow, bwd_flow: [B, 2, H, W]
80
+ # alpha and beta values are following UnFlow (https://arxiv.org/abs/1711.07837)
81
+ assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
82
+ assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
83
+ flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W]
84
+
85
+ warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W]
86
+ warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W]
87
+
88
+ diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W]
89
+ diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1)
90
+
91
+ threshold = alpha * flow_mag + beta
92
+
93
+ fwd_occ = (diff_fwd > threshold).float() # [B, H, W]
94
+ bwd_occ = (diff_bwd > threshold).float()
95
+
96
+ return fwd_occ, bwd_occ
97
+
98
+
99
+ def back_project(depth, intrinsics):
100
+ # Back project 2D pixel coords to 3D points
101
+ # depth: [B, H, W]
102
+ # intrinsics: [B, 3, 3]
103
+ b, h, w = depth.shape
104
+ grid = coords_grid(b, h, w, homogeneous=True, device=depth.device) # [B, 3, H, W]
105
+
106
+ intrinsics_inv = torch.inverse(intrinsics) # [B, 3, 3]
107
+
108
+ points = intrinsics_inv.bmm(grid.view(b, 3, -1)).view(b, 3, h, w) * depth.unsqueeze(1) # [B, 3, H, W]
109
+
110
+ return points
111
+
112
+
113
+ def camera_transform(points_ref, extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None):
114
+ # Transform 3D points from reference camera to target camera
115
+ # points_ref: [B, 3, H, W]
116
+ # extrinsics_ref: [B, 4, 4]
117
+ # extrinsics_tgt: [B, 4, 4]
118
+ # extrinsics_rel: [B, 4, 4], relative pose transform
119
+ b, _, h, w = points_ref.shape
120
+
121
+ if extrinsics_rel is None:
122
+ extrinsics_rel = torch.bmm(extrinsics_tgt, torch.inverse(extrinsics_ref)) # [B, 4, 4]
123
+
124
+ points_tgt = torch.bmm(extrinsics_rel[:, :3, :3],
125
+ points_ref.view(b, 3, -1)) + extrinsics_rel[:, :3, -1:] # [B, 3, H*W]
126
+
127
+ points_tgt = points_tgt.view(b, 3, h, w) # [B, 3, H, W]
128
+
129
+ return points_tgt
130
+
131
+
132
+ def reproject(points_tgt, intrinsics, return_mask=False):
133
+ # reproject to target view
134
+ # points_tgt: [B, 3, H, W]
135
+ # intrinsics: [B, 3, 3]
136
+
137
+ b, _, h, w = points_tgt.shape
138
+
139
+ proj_points = torch.bmm(intrinsics, points_tgt.view(b, 3, -1)).view(b, 3, h, w) # [B, 3, H, W]
140
+
141
+ X = proj_points[:, 0]
142
+ Y = proj_points[:, 1]
143
+ Z = proj_points[:, 2].clamp(min=1e-3)
144
+
145
+ pixel_coords = torch.stack([X / Z, Y / Z], dim=1).view(b, 2, h, w) # [B, 2, H, W] in image scale
146
+
147
+ if return_mask:
148
+ # valid mask in pixel space
149
+ mask = (pixel_coords[:, 0] >= 0) & (pixel_coords[:, 0] <= (w - 1)) & (
150
+ pixel_coords[:, 1] >= 0) & (pixel_coords[:, 1] <= (h - 1)) # [B, H, W]
151
+
152
+ return pixel_coords, mask
153
+
154
+ return pixel_coords
155
+
156
+
157
+ def reproject_coords(depth_ref, intrinsics, extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None,
158
+ return_mask=False):
159
+ # Compute reprojection sample coords
160
+ points_ref = back_project(depth_ref, intrinsics) # [B, 3, H, W]
161
+ points_tgt = camera_transform(points_ref, extrinsics_ref, extrinsics_tgt, extrinsics_rel=extrinsics_rel)
162
+
163
+ if return_mask:
164
+ reproj_coords, mask = reproject(points_tgt, intrinsics,
165
+ return_mask=return_mask) # [B, 2, H, W] in image scale
166
+
167
+ return reproj_coords, mask
168
+
169
+ reproj_coords = reproject(points_tgt, intrinsics,
170
+ return_mask=return_mask) # [B, 2, H, W] in image scale
171
+
172
+ return reproj_coords
173
+
174
+
175
+ def compute_flow_with_depth_pose(depth_ref, intrinsics,
176
+ extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None,
177
+ return_mask=False):
178
+ b, h, w = depth_ref.shape
179
+ coords_init = coords_grid(b, h, w, device=depth_ref.device) # [B, 2, H, W]
180
+
181
+ if return_mask:
182
+ reproj_coords, mask = reproject_coords(depth_ref, intrinsics, extrinsics_ref, extrinsics_tgt,
183
+ extrinsics_rel=extrinsics_rel,
184
+ return_mask=return_mask) # [B, 2, H, W]
185
+ rigid_flow = reproj_coords - coords_init
186
+
187
+ return rigid_flow, mask
188
+
189
+ reproj_coords = reproject_coords(depth_ref, intrinsics, extrinsics_ref, extrinsics_tgt,
190
+ extrinsics_rel=extrinsics_rel,
191
+ return_mask=return_mask) # [B, 2, H, W]
192
+
193
+ rigid_flow = reproj_coords - coords_init
194
+
195
+ return rigid_flow
unimatch/matching.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+ from .geometry import coords_grid, generate_window_grid, normalize_coords
5
+
6
+
7
+ def global_correlation_softmax(feature0, feature1,
8
+ pred_bidir_flow=False,
9
+ ):
10
+ # global correlation
11
+ b, c, h, w = feature0.shape
12
+ feature0 = feature0.view(b, c, -1).permute(0, 2, 1) # [B, H*W, C]
13
+ feature1 = feature1.view(b, c, -1) # [B, C, H*W]
14
+
15
+ correlation = torch.matmul(feature0, feature1).view(b, h, w, h, w) / (c ** 0.5) # [B, H, W, H, W]
16
+
17
+ # flow from softmax
18
+ init_grid = coords_grid(b, h, w).to(correlation.device) # [B, 2, H, W]
19
+ grid = init_grid.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2]
20
+
21
+ correlation = correlation.view(b, h * w, h * w) # [B, H*W, H*W]
22
+
23
+ if pred_bidir_flow:
24
+ correlation = torch.cat((correlation, correlation.permute(0, 2, 1)), dim=0) # [2*B, H*W, H*W]
25
+ init_grid = init_grid.repeat(2, 1, 1, 1) # [2*B, 2, H, W]
26
+ grid = grid.repeat(2, 1, 1) # [2*B, H*W, 2]
27
+ b = b * 2
28
+
29
+ prob = F.softmax(correlation, dim=-1) # [B, H*W, H*W]
30
+
31
+ correspondence = torch.matmul(prob, grid).view(b, h, w, 2).permute(0, 3, 1, 2) # [B, 2, H, W]
32
+
33
+ # when predicting bidirectional flow, flow is the concatenation of forward flow and backward flow
34
+ flow = correspondence - init_grid
35
+
36
+ return flow, prob
37
+
38
+
39
+ def local_correlation_softmax(feature0, feature1, local_radius,
40
+ padding_mode='zeros',
41
+ ):
42
+ b, c, h, w = feature0.size()
43
+ coords_init = coords_grid(b, h, w).to(feature0.device) # [B, 2, H, W]
44
+ coords = coords_init.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2]
45
+
46
+ local_h = 2 * local_radius + 1
47
+ local_w = 2 * local_radius + 1
48
+
49
+ window_grid = generate_window_grid(-local_radius, local_radius,
50
+ -local_radius, local_radius,
51
+ local_h, local_w, device=feature0.device) # [2R+1, 2R+1, 2]
52
+ window_grid = window_grid.reshape(-1, 2).repeat(b, 1, 1, 1) # [B, 1, (2R+1)^2, 2]
53
+ sample_coords = coords.unsqueeze(-2) + window_grid # [B, H*W, (2R+1)^2, 2]
54
+
55
+ sample_coords_softmax = sample_coords
56
+
57
+ # exclude coords that are out of image space
58
+ valid_x = (sample_coords[:, :, :, 0] >= 0) & (sample_coords[:, :, :, 0] < w) # [B, H*W, (2R+1)^2]
59
+ valid_y = (sample_coords[:, :, :, 1] >= 0) & (sample_coords[:, :, :, 1] < h) # [B, H*W, (2R+1)^2]
60
+
61
+ valid = valid_x & valid_y # [B, H*W, (2R+1)^2], used to mask out invalid values when softmax
62
+
63
+ # normalize coordinates to [-1, 1]
64
+ sample_coords_norm = normalize_coords(sample_coords, h, w) # [-1, 1]
65
+ window_feature = F.grid_sample(feature1, sample_coords_norm,
66
+ padding_mode=padding_mode, align_corners=True
67
+ ).permute(0, 2, 1, 3) # [B, H*W, C, (2R+1)^2]
68
+ feature0_view = feature0.permute(0, 2, 3, 1).view(b, h * w, 1, c) # [B, H*W, 1, C]
69
+
70
+ corr = torch.matmul(feature0_view, window_feature).view(b, h * w, -1) / (c ** 0.5) # [B, H*W, (2R+1)^2]
71
+
72
+ # mask invalid locations
73
+ corr[~valid] = -1e9
74
+
75
+ prob = F.softmax(corr, -1) # [B, H*W, (2R+1)^2]
76
+
77
+ correspondence = torch.matmul(prob.unsqueeze(-2), sample_coords_softmax).squeeze(-2).view(
78
+ b, h, w, 2).permute(0, 3, 1, 2) # [B, 2, H, W]
79
+
80
+ flow = correspondence - coords_init
81
+ match_prob = prob
82
+
83
+ return flow, match_prob
84
+
85
+
86
+ def local_correlation_with_flow(feature0, feature1,
87
+ flow,
88
+ local_radius,
89
+ padding_mode='zeros',
90
+ dilation=1,
91
+ ):
92
+ b, c, h, w = feature0.size()
93
+ coords_init = coords_grid(b, h, w).to(feature0.device) # [B, 2, H, W]
94
+ coords = coords_init.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2]
95
+
96
+ local_h = 2 * local_radius + 1
97
+ local_w = 2 * local_radius + 1
98
+
99
+ window_grid = generate_window_grid(-local_radius, local_radius,
100
+ -local_radius, local_radius,
101
+ local_h, local_w, device=feature0.device) # [2R+1, 2R+1, 2]
102
+ window_grid = window_grid.reshape(-1, 2).repeat(b, 1, 1, 1) # [B, 1, (2R+1)^2, 2]
103
+ sample_coords = coords.unsqueeze(-2) + window_grid * dilation # [B, H*W, (2R+1)^2, 2]
104
+
105
+ # flow can be zero when using features after transformer
106
+ if not isinstance(flow, float):
107
+ sample_coords = sample_coords + flow.view(
108
+ b, 2, -1).permute(0, 2, 1).unsqueeze(-2) # [B, H*W, (2R+1)^2, 2]
109
+ else:
110
+ assert flow == 0.
111
+
112
+ # normalize coordinates to [-1, 1]
113
+ sample_coords_norm = normalize_coords(sample_coords, h, w) # [-1, 1]
114
+ window_feature = F.grid_sample(feature1, sample_coords_norm,
115
+ padding_mode=padding_mode, align_corners=True
116
+ ).permute(0, 2, 1, 3) # [B, H*W, C, (2R+1)^2]
117
+ feature0_view = feature0.permute(0, 2, 3, 1).view(b, h * w, 1, c) # [B, H*W, 1, C]
118
+