seokju cho
initial commit
f8f62f3
raw
history blame
12.1 kB
import json
import logging
import math
import os
import time
import numpy as np
import torch
import torch.nn.functional as F
try:
import wandb
except ImportError:
wandb = None
from open_clip import ClipLoss, get_cast_dtype
from .distributed import is_master
from .zero_shot import zero_shot_eval
from .precision import get_autocast
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def unwrap_model(model):
if hasattr(model, 'module'):
return model.module
else:
return model
def backward(total_loss, scaler):
if scaler is not None:
scaler.scale(total_loss).backward()
else:
total_loss.backward()
def train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, tb_writer=None):
device = torch.device(args.device)
autocast = get_autocast(args.precision)
cast_dtype = get_cast_dtype(args.precision)
model.train()
loss = ClipLoss(
local_loss=args.local_loss,
gather_with_grad=args.gather_with_grad,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod)
data['train'].set_epoch(epoch) # set epoch in process safe manner via sampler or shared_epoch
dataloader = data['train'].dataloader
num_batches_per_epoch = dataloader.num_batches // args.accum_freq
sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10))
if args.accum_freq > 1:
accum_images, accum_texts, accum_image_features, accum_text_features = [], [], [], []
loss_m = AverageMeter()
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
for i, batch in enumerate(dataloader):
i_accum = i // args.accum_freq
step = num_batches_per_epoch * epoch + i_accum
if not args.skip_scheduler:
scheduler(step)
images, texts = batch
images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
data_time_m.update(time.time() - end)
optimizer.zero_grad()
if args.accum_freq == 1:
with autocast():
image_features, text_features, logit_scale = model(images, texts)
total_loss = loss(image_features, text_features, logit_scale)
backward(total_loss, scaler)
else:
# First, cache the features without any gradient tracking.
with torch.no_grad():
with autocast():
chunk_image_features, chunk_text_features, _ = model(images, texts)
accum_image_features.append(chunk_image_features)
accum_text_features.append(chunk_text_features)
accum_images.append(images)
accum_texts.append(texts)
# If (i + 1) % accum_freq is not zero, move on to the next batch.
if ((i + 1) % args.accum_freq) > 0:
# FIXME this makes data time logging unreliable when accumulating
continue
# Now, ready to take gradients for the last accum_freq batches.
# Re-do the forward pass for those batches, and use the cached features from the other batches as negatives.
# Call backwards each time, but only step optimizer at the end.
optimizer.zero_grad()
for j in range(args.accum_freq):
images = accum_images[j]
texts = accum_texts[j]
with autocast():
chunk_image_features, chunk_text_features, logit_scale = model(images, texts)
image_features = torch.cat(
accum_image_features[:j] + [chunk_image_features] + accum_image_features[j + 1:])
text_features = torch.cat(
accum_text_features[:j] + [chunk_text_features] + accum_text_features[j + 1:])
total_loss = loss(image_features, text_features, logit_scale)
backward(total_loss, scaler)
if scaler is not None:
if args.horovod:
optimizer.synchronize()
scaler.unscale_(optimizer)
if args.grad_clip_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
with optimizer.skip_synchronize():
scaler.step(optimizer)
else:
if args.grad_clip_norm is not None:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
scaler.step(optimizer)
scaler.update()
else:
if args.grad_clip_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
optimizer.step()
# reset gradient accum, if enabled
if args.accum_freq > 1:
accum_images, accum_texts, accum_image_features, accum_text_features = [], [], [], []
# Note: we clamp to 4.6052 = ln(100), as in the original paper.
with torch.no_grad():
unwrap_model(model).logit_scale.clamp_(0, math.log(100))
batch_time_m.update(time.time() - end)
end = time.time()
batch_count = i_accum + 1
if is_master(args) and (i_accum % args.log_every_n_steps == 0 or batch_count == num_batches_per_epoch):
batch_size = len(images)
num_samples = batch_count * batch_size * args.accum_freq * args.world_size
samples_per_epoch = dataloader.num_samples
percent_complete = 100.0 * batch_count / num_batches_per_epoch
# NOTE loss is coarsely sampled, just master node and per log update
loss_m.update(total_loss.item(), batch_size)
logit_scale_scalar = logit_scale.item()
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f}, {args.accum_freq * args.batch_size * args.world_size / batch_time_m.val:#g}/s "
f"LR: {optimizer.param_groups[0]['lr']:5f} "
f"Logit Scale: {logit_scale_scalar:.3f}"
)
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing
log_data = {
"loss": loss_m.val,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"samples_per_second": args.accum_freq * args.batch_size * args.world_size / batch_time_m.val,
"scale": logit_scale_scalar,
"lr": optimizer.param_groups[0]["lr"]
}
for name, val in log_data.items():
name = "train/" + name
if tb_writer is not None:
tb_writer.add_scalar(name, val, step)
if args.wandb:
assert wandb is not None, 'Please install wandb.'
wandb.log({name: val, 'step': step})
# resetting batch / data time meters per log window
batch_time_m.reset()
data_time_m.reset()
# end for
def evaluate(model, data, epoch, args, tb_writer=None):
metrics = {}
if not is_master(args):
return metrics
device = torch.device(args.device)
model.eval()
zero_shot_metrics = zero_shot_eval(model, data, epoch, args)
metrics.update(zero_shot_metrics)
autocast = get_autocast(args.precision)
cast_dtype = get_cast_dtype(args.precision)
if 'val' in data and (args.val_frequency and ((epoch % args.val_frequency) == 0 or epoch == args.epochs)):
dataloader = data['val'].dataloader
num_samples = 0
samples_per_val = dataloader.num_samples
# FIXME this does not scale past small eval datasets
# all_image_features @ all_text_features will blow up memory and compute very quickly
cumulative_loss = 0.0
all_image_features, all_text_features = [], []
with torch.no_grad():
for i, batch in enumerate(dataloader):
images, texts = batch
images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
with autocast():
image_features, text_features, logit_scale = model(images, texts)
# features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly
# however, system RAM is easily exceeded and compute time becomes problematic
all_image_features.append(image_features.cpu())
all_text_features.append(text_features.cpu())
logit_scale = logit_scale.mean()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
batch_size = images.shape[0]
labels = torch.arange(batch_size, device=device).long()
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
cumulative_loss += total_loss * batch_size
num_samples += batch_size
if is_master(args) and (i % 100) == 0:
logging.info(
f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]\t"
f"Loss: {cumulative_loss / num_samples:.6f}\t")
val_metrics = get_metrics(
image_features=torch.cat(all_image_features),
text_features=torch.cat(all_text_features),
logit_scale=logit_scale.cpu(),
)
loss = cumulative_loss / num_samples
metrics.update(
{**val_metrics, "val_loss": loss.item(), "epoch": epoch, "num_samples": num_samples}
)
if not metrics:
return metrics
logging.info(
f"Eval Epoch: {epoch} "
+ "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in metrics.items()])
)
if args.save_logs:
for name, val in metrics.items():
if tb_writer is not None:
tb_writer.add_scalar(f"val/{name}", val, epoch)
with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f:
f.write(json.dumps(metrics))
f.write("\n")
if args.wandb:
assert wandb is not None, 'Please install wandb.'
for name, val in metrics.items():
wandb.log({f"val/{name}": val, 'epoch': epoch})
return metrics
def get_metrics(image_features, text_features, logit_scale):
metrics = {}
logits_per_image = (logit_scale * image_features @ text_features.t()).detach().cpu()
logits_per_text = logits_per_image.t().detach().cpu()
logits = {"image_to_text": logits_per_image, "text_to_image": logits_per_text}
ground_truth = torch.arange(len(text_features)).view(-1, 1)
for name, logit in logits.items():
ranking = torch.argsort(logit, descending=True)
preds = torch.where(ranking == ground_truth)[1]
preds = preds.detach().cpu().numpy()
metrics[f"{name}_mean_rank"] = preds.mean() + 1
metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1
for k in [1, 5, 10]:
metrics[f"{name}_R@{k}"] = np.mean(preds < k)
return metrics