|
import os
|
|
import sys
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from models.base_model import BaseModelGradCAM
|
|
from utils import configs
|
|
|
|
from .lightning_module import ImageClassificationLightningModule
|
|
|
|
|
|
class DeepLearningGradCAM(BaseModelGradCAM):
|
|
def __init__(
|
|
self,
|
|
name_model: str,
|
|
freeze_model: bool,
|
|
pretrained_model: bool,
|
|
support_set_method: str,
|
|
):
|
|
super().__init__(name_model, freeze_model, pretrained_model, support_set_method)
|
|
self.init_model()
|
|
self.set_grad_cam()
|
|
|
|
def init_model(self):
|
|
self.model = ImageClassificationLightningModule.load_from_checkpoint(
|
|
os.path.join(
|
|
configs.WEIGHTS_PATH,
|
|
self.name_model,
|
|
self.support_set_method,
|
|
"best.ckpt",
|
|
),
|
|
name_model=self.name_model,
|
|
freeze_model=self.freeze_model,
|
|
pretrained_model=self.pretrained_model,
|
|
)
|
|
self.model = self.model.model
|
|
for layer in self.model.children():
|
|
if hasattr(layer, "reset_parameters") and not self.pretrained_model:
|
|
layer.reset_parameters()
|
|
for param in self.model.parameters():
|
|
param.required_grad = False if not self.freeze_model else True
|
|
self.model.to(self.device)
|
|
self.model.eval()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
model = DeepLearningGradCAM("resnet50", False, True, "5_shot")
|
|
image = np.array(
|
|
Image.open(
|
|
"../../assets/example_images/gon/306e5d35-b301-4299-8022-0c89dc0b7690.png"
|
|
).convert("RGB")
|
|
)
|
|
gradcam = model.get_grad_cam(image)
|
|
plt.imshow(gradcam)
|
|
plt.show()
|
|
|