|
import os
|
|
import sys
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from models.base_model import BaseModelMainModel
|
|
from utils import configs
|
|
from utils.functional import image_augmentations, active_learning_uncertainty
|
|
|
|
from .lightning_module import ImageClassificationLightningModule
|
|
|
|
|
|
class DeepLearningModel(BaseModelMainModel):
|
|
def __init__(
|
|
self,
|
|
name_model: str,
|
|
freeze_model: bool,
|
|
pretrained_model: bool,
|
|
support_set_method: str,
|
|
):
|
|
super().__init__(name_model, freeze_model, pretrained_model, support_set_method)
|
|
self.init_model()
|
|
|
|
def init_model(self):
|
|
self.model = ImageClassificationLightningModule.load_from_checkpoint(
|
|
os.path.join(
|
|
configs.WEIGHTS_PATH,
|
|
self.name_model,
|
|
self.support_set_method,
|
|
"best.ckpt",
|
|
),
|
|
name_model=self.name_model,
|
|
freeze_model=self.freeze_model,
|
|
pretrained_model=self.pretrained_model,
|
|
)
|
|
self.model = self.model.model
|
|
for layer in self.model.children():
|
|
if hasattr(layer, "reset_parameters") and not self.pretrained_model:
|
|
layer.reset_parameters()
|
|
for param in self.model.parameters():
|
|
param.required_grad = False if not self.freeze_model else True
|
|
self.model.to(self.device)
|
|
self.model.eval()
|
|
|
|
def predict(self, image: np.ndarray) -> dict:
|
|
image_input = image_augmentations()(image=image)["image"]
|
|
image_input = image_input.unsqueeze(axis=0).to(self.device)
|
|
with torch.no_grad():
|
|
start_time = time.perf_counter()
|
|
result = self.model(image_input)
|
|
end_time = time.perf_counter() - start_time
|
|
result = torch.softmax(result, dim=1)
|
|
result = result.detach().cpu().numpy()
|
|
result_index = np.argmax(result)
|
|
confidence = result[0][result_index]
|
|
uncertainty_score = active_learning_uncertainty(result[0])
|
|
uncertainty_score = uncertainty_score if uncertainty_score > 0 else 0
|
|
if (
|
|
uncertainty_score
|
|
> configs.NAME_MODELS[self.name_model][
|
|
"deep_learning_out_of_distribution_threshold"
|
|
][self.support_set_method]
|
|
):
|
|
return {
|
|
"character": configs.CLASS_CHARACTERS[-1],
|
|
"confidence": confidence,
|
|
"inference_time": end_time,
|
|
}
|
|
return {
|
|
"character": configs.CLASS_CHARACTERS[result_index],
|
|
"confidence": confidence,
|
|
"inference_time": end_time,
|
|
}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
model = DeepLearningModel("resnet50", True, True, "1_shot")
|
|
image = np.array(
|
|
Image.open(
|
|
"../../assets/example_images/gon/306e5d35-b301-4299-8022-0c89dc0b7690.png"
|
|
).convert("RGB")
|
|
)
|
|
result = model.predict(image)
|
|
print(result)
|
|
|