|
import os
|
|
import sys
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
|
|
|
|
import timm
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import CLIPModel as CLIPTransformersModel
|
|
|
|
from utils import configs
|
|
from utils.functional import check_data_type_variable, get_device
|
|
|
|
|
|
class CLIPModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
model_clip_name: str,
|
|
freeze_model: bool,
|
|
pretrained_model: bool,
|
|
num_classes: int,
|
|
):
|
|
super().__init__()
|
|
self.model_clip_name = model_clip_name
|
|
self.freeze_model = freeze_model
|
|
self.pretrained_model = pretrained_model
|
|
self.num_classes = num_classes
|
|
self.device = get_device()
|
|
|
|
self.check_arguments()
|
|
self.init_model()
|
|
|
|
def check_arguments(self):
|
|
check_data_type_variable(self.model_clip_name, str)
|
|
check_data_type_variable(self.freeze_model, bool)
|
|
check_data_type_variable(self.pretrained_model, bool)
|
|
check_data_type_variable(self.num_classes, int)
|
|
|
|
if self.model_clip_name != configs.CLIP_NAME_MODEL:
|
|
raise ValueError(
|
|
f"Model clip name must be {configs.CLIP_NAME_MODEL}, but it is {self.model_clip_name}"
|
|
)
|
|
|
|
def init_model(self):
|
|
clip_model = CLIPTransformersModel.from_pretrained(self.model_clip_name)
|
|
for layer in clip_model.children():
|
|
if hasattr(layer, "reset_parameters") and not self.pretrained_model:
|
|
layer.reset_parameters()
|
|
for param in clip_model.parameters():
|
|
param.required_grad = False if not self.freeze_model else True
|
|
self.vision_model = clip_model.vision_model.to(self.device)
|
|
self.visual_projection = clip_model.visual_projection.to(self.device).to(
|
|
self.device
|
|
)
|
|
self.classifier = nn.Linear(
|
|
512, 1 if self.num_classes in (1, 2) else self.num_classes
|
|
).to(self.device)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.vision_model(x)
|
|
x = self.visual_projection(x.pooler_output)
|
|
x = self.classifier(x)
|
|
return x
|
|
|
|
|
|
class TorchModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
name_model: str,
|
|
freeze_model: bool,
|
|
pretrained_model: bool,
|
|
num_classes: int,
|
|
):
|
|
super().__init__()
|
|
self.name_model = name_model
|
|
self.freeze_model = freeze_model
|
|
self.pretrained_model = pretrained_model
|
|
self.num_classes = num_classes
|
|
self.device = get_device()
|
|
|
|
self.check_arguments()
|
|
self.init_model()
|
|
|
|
def check_arguments(self):
|
|
check_data_type_variable(self.name_model, str)
|
|
check_data_type_variable(self.freeze_model, bool)
|
|
check_data_type_variable(self.pretrained_model, bool)
|
|
check_data_type_variable(self.num_classes, int)
|
|
|
|
if self.name_model not in tuple(configs.NAME_MODELS.keys()):
|
|
raise ValueError(
|
|
f"Name model must be in {tuple(configs.NAME_MODELS.keys())}, but it is {self.name_model}"
|
|
)
|
|
|
|
def init_model(self):
|
|
self.model = timm.create_model(
|
|
self.name_model, pretrained=self.pretrained_model, num_classes=0
|
|
).to(self.device)
|
|
for param in self.model.parameters():
|
|
param.required_grad = False if not self.freeze_model else True
|
|
self.classifier = nn.Linear(
|
|
self.model.num_features,
|
|
1 if self.num_classes in (1, 2) else self.num_classes,
|
|
).to(self.device)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.model(x)
|
|
x = self.classifier(x)
|
|
return x
|
|
|