|
import os
|
|
import sys
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import CLIPModel as CLIPTransformersModel
|
|
from transformers import CLIPProcessor
|
|
|
|
from models.base_model import BaseModelMainModel
|
|
|
|
|
|
class CLIPModel(BaseModelMainModel):
|
|
def __init__(
|
|
self,
|
|
name_model: str,
|
|
freeze_model: bool,
|
|
pretrained_model: bool,
|
|
support_set_method: str,
|
|
):
|
|
super().__init__(name_model, freeze_model, pretrained_model, support_set_method)
|
|
self.init_model()
|
|
|
|
def init_model(self):
|
|
self.model = CLIPTransformersModel.from_pretrained(self.name_model)
|
|
for layer in self.model.children():
|
|
if hasattr(layer, "reset_parameters") and not self.pretrained_model:
|
|
layer.reset_parameters()
|
|
for param in self.model.parameters():
|
|
param.required_grad = False if not self.freeze_model else True
|
|
self.model.to(self.device)
|
|
self.model.eval()
|
|
self.processor = CLIPProcessor.from_pretrained(self.name_model)
|
|
|
|
def predict(self, image: np.ndarray, list_class: tuple) -> dict:
|
|
image = Image.fromarray(image)
|
|
with torch.no_grad():
|
|
inputs = self.processor(
|
|
text=list_class, images=image, return_tensors="pt", padding=True
|
|
)
|
|
start_time = time.perf_counter()
|
|
outputs = self.model(**inputs)
|
|
end_time = time.perf_counter() - start_time
|
|
logits_per_image = outputs.logits_per_image
|
|
probs = logits_per_image.softmax(dim=1)
|
|
argmax_probs = probs.argmax(dim=1)
|
|
result = list_class[argmax_probs[0]]
|
|
return {
|
|
"class": result,
|
|
"confidence": float(probs[0, argmax_probs[0]]),
|
|
"inference_time": end_time,
|
|
}
|
|
|