|
|
|
|
|
|
|
|
|
|
|
import asyncio |
|
import docx |
|
import gradio as gr |
|
import httpx |
|
import json |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import pytesseract |
|
import random |
|
import requests |
|
import threading |
|
import uuid |
|
import zipfile |
|
import io |
|
|
|
from PIL import Image |
|
from pathlib import Path |
|
from pptx import Presentation |
|
from openpyxl import load_workbook |
|
|
|
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") |
|
|
|
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER") |
|
INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA") |
|
|
|
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}")) |
|
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM") |
|
|
|
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h] |
|
LINUX_SERVER_HOSTS_MARKED = set() |
|
LINUX_SERVER_HOSTS_ATTEMPTS = {} |
|
|
|
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k] |
|
LINUX_SERVER_PROVIDER_KEYS_MARKED = set() |
|
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {} |
|
|
|
LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(","))) |
|
|
|
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 8)} |
|
|
|
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)} |
|
|
|
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) |
|
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) |
|
MODEL_CHOICES = list(MODEL_MAPPING.values()) |
|
|
|
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) |
|
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None |
|
|
|
META_TAGS = os.getenv("META_TAGS") |
|
|
|
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]")) |
|
|
|
class SessionWithID(requests.Session): |
|
def __init__(sess): |
|
super().__init__() |
|
sess.session_id = str(uuid.uuid4()) |
|
|
|
def create_session(): |
|
return SessionWithID() |
|
|
|
def ensure_stop_event(sess): |
|
if not hasattr(sess, "stop_event"): |
|
sess.stop_event = asyncio.Event() |
|
|
|
def get_available_items(items, marked): |
|
a = [i for i in items if i not in marked] |
|
random.shuffle(a) |
|
return a |
|
|
|
def marked_item(item, marked, attempts): |
|
marked.add(item) |
|
attempts[item] = attempts.get(item, 0) + 1 |
|
if attempts[item] >= 3: |
|
def remove(): |
|
marked.discard(item) |
|
attempts.pop(item, None) |
|
threading.Timer(300, remove).start() |
|
|
|
def get_model_key(display): |
|
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY) |
|
|
|
def extract_pdf_content(fp): |
|
content = "" |
|
try: |
|
with pdfplumber.open(fp) as pdf: |
|
for page in pdf.pages: |
|
text = page.extract_text() or "" |
|
content += text + "\n" |
|
if page.images: |
|
img_obj = page.to_image(resolution=300) |
|
for img in page.images: |
|
bbox = (img["x0"], img["top"], img["x1"], img["bottom"]) |
|
cropped = img_obj.original.crop(bbox) |
|
ocr_text = pytesseract.image_to_string(cropped) |
|
if ocr_text.strip(): |
|
content += ocr_text + "\n" |
|
tables = page.extract_tables() |
|
for table in tables: |
|
for row in table: |
|
cells = [str(cell) for cell in row if cell is not None] |
|
if cells: |
|
content += "\t".join(cells) + "\n" |
|
except Exception as e: |
|
content += f"{fp}: {e}" |
|
return content.strip() |
|
|
|
def extract_docx_content(fp): |
|
content = "" |
|
try: |
|
doc = docx.Document(fp) |
|
for para in doc.paragraphs: |
|
content += para.text + "\n" |
|
for table in doc.tables: |
|
for row in table.rows: |
|
cells = [cell.text for cell in row.cells] |
|
content += "\t".join(cells) + "\n" |
|
with zipfile.ZipFile(fp) as z: |
|
for file in z.namelist(): |
|
if file.startswith("word/media/"): |
|
data = z.read(file) |
|
try: |
|
img = Image.open(io.BytesIO(data)) |
|
ocr_text = pytesseract.image_to_string(img) |
|
if ocr_text.strip(): |
|
content += ocr_text + "\n" |
|
except: |
|
pass |
|
except Exception as e: |
|
content += f"{fp}: {e}" |
|
return content.strip() |
|
|
|
def extract_excel_content(fp): |
|
content = "" |
|
try: |
|
sheets = pd.read_excel(fp, sheet_name=None) |
|
for name, df in sheets.items(): |
|
content += f"Sheet: {name}\n" |
|
content += df.to_csv(index=False) + "\n" |
|
wb = load_workbook(fp, data_only=True) |
|
if wb._images: |
|
for image in wb._images: |
|
img = image.ref |
|
if isinstance(img, bytes): |
|
try: |
|
pil_img = Image.open(io.BytesIO(img)) |
|
ocr_text = pytesseract.image_to_string(pil_img) |
|
if ocr_text.strip(): |
|
content += ocr_text + "\n" |
|
except: |
|
pass |
|
except Exception as e: |
|
content += f"{fp}: {e}" |
|
return content.strip() |
|
|
|
def extract_pptx_content(fp): |
|
content = "" |
|
try: |
|
prs = Presentation(fp) |
|
for slide in prs.slides: |
|
for shape in slide.shapes: |
|
if hasattr(shape, "text") and shape.text: |
|
content += shape.text + "\n" |
|
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image: |
|
try: |
|
img = Image.open(io.BytesIO(shape.image.blob)) |
|
ocr_text = pytesseract.image_to_string(img) |
|
if ocr_text.strip(): |
|
content += ocr_text + "\n" |
|
except: |
|
pass |
|
for shape in slide.shapes: |
|
if shape.has_table: |
|
table = shape.table |
|
for row in table.rows: |
|
cells = [cell.text for cell in row.cells] |
|
content += "\t".join(cells) + "\n" |
|
except Exception as e: |
|
content += f"{fp}: {e}" |
|
return content.strip() |
|
|
|
def extract_file_content(fp): |
|
ext = Path(fp).suffix.lower() |
|
if ext == ".pdf": |
|
return extract_pdf_content(fp) |
|
elif ext in [".doc", ".docx"]: |
|
return extract_docx_content(fp) |
|
elif ext in [".xlsx", ".xls"]: |
|
return extract_excel_content(fp) |
|
elif ext in [".ppt", ".pptx"]: |
|
return extract_pptx_content(fp) |
|
else: |
|
try: |
|
return Path(fp).read_text(encoding="utf-8").strip() |
|
except Exception as e: |
|
return f"{fp}: {e}" |
|
|
|
async def fetch_response_async(host, key, model, msgs, cfg, sid): |
|
for t in [1, 2]: |
|
try: |
|
async with httpx.AsyncClient(timeout=t) as client: |
|
payload = {"model": model, "messages": msgs, **cfg, "session_id": sid, "stream": True} |
|
headers = {"Authorization": f"Bearer {key}"} |
|
async with client.stream("POST", host, json=payload, headers=headers) as r: |
|
if r.status_code in LINUX_SERVER_ERRORS: |
|
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) |
|
return |
|
r.raise_for_status() |
|
async for line in r.aiter_lines(): |
|
if not line.strip() or RESPONSES["RESPONSE_10"] in line.upper(): |
|
continue |
|
try: |
|
txt = line |
|
if txt.startswith("data:"): |
|
txt = txt[5:].strip() |
|
data = json.loads(txt) |
|
chunk = data.get("choices", [{}])[0].get("delta", {}).get("content", "") |
|
except: |
|
chunk = "" |
|
if chunk.strip(): |
|
yield chunk |
|
return |
|
except: |
|
continue |
|
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) |
|
return |
|
|
|
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt): |
|
ensure_stop_event(sess) |
|
if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS): |
|
yield RESPONSES["RESPONSE_3"] |
|
return |
|
if not hasattr(sess, "session_id") or not sess.session_id: |
|
sess.session_id = str(uuid.uuid4()) |
|
sess.stop_event = asyncio.Event() |
|
if not hasattr(sess, "active_candidate"): |
|
sess.active_candidate = None |
|
model_key = get_model_key(model_display) |
|
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG) |
|
msgs = [{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a] |
|
prompt = INTERNAL_TRAINING_DATA if model_key == DEFAULT_MODEL_KEY and INTERNAL_TRAINING_DATA else (custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)) |
|
msgs.insert(0, {"role": "system", "content": prompt}) |
|
msgs.append({"role": "user", "content": user_input}) |
|
if sess.active_candidate: |
|
async for chunk in fetch_response_async(sess.active_candidate[0], sess.active_candidate[1], model_key, msgs, cfg, sess.session_id): |
|
yield chunk |
|
return |
|
keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) |
|
hosts = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS) |
|
random.shuffle(keys) |
|
random.shuffle(hosts) |
|
for k in keys: |
|
for h in hosts: |
|
try: |
|
collected = "" |
|
async for chunk in fetch_response_async(h, k, model_key, msgs, cfg, sess.session_id): |
|
collected += chunk |
|
yield chunk |
|
if collected: |
|
sess.active_candidate = (h, k) |
|
return |
|
except: |
|
continue |
|
yield RESPONSES["RESPONSE_2"] |
|
|
|
async def respond_async(multi, history, model_display, sess, custom_prompt): |
|
ensure_stop_event(sess) |
|
sess.stop_event.clear() |
|
msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])} |
|
if not msg_input["text"] and not msg_input["files"]: |
|
yield history, gr.MultimodalTextbox(value="", interactive=True, submit_btn=True, stop_btn=False), sess |
|
return |
|
inp = "" |
|
for f in msg_input["files"]: |
|
fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f |
|
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n" |
|
if msg_input["text"]: |
|
inp += msg_input["text"] |
|
history.append([inp, None]) |
|
yield history, gr.MultimodalTextbox(interactive=False, submit_btn=False, stop_btn=True), sess |
|
try: |
|
accumulated_response = "" |
|
async for chunk in chat_with_model_async(history, inp, model_display, sess, custom_prompt): |
|
if sess.stop_event.is_set(): |
|
history[-1][1] = RESPONSES["RESPONSE_1"] |
|
yield history, gr.MultimodalTextbox(value="", interactive=True, submit_btn=True, stop_btn=False), sess |
|
sess.stop_event.clear() |
|
return |
|
accumulated_response += chunk |
|
history[-1][1] = accumulated_response |
|
yield history, gr.MultimodalTextbox(interactive=False, submit_btn=False, stop_btn=True), sess |
|
except Exception: |
|
history[-1][1] = RESPONSES["RESPONSE_2"] |
|
yield history, gr.MultimodalTextbox(value="", interactive=True, submit_btn=True, stop_btn=False), sess |
|
return |
|
yield history, gr.MultimodalTextbox(value="", interactive=True, submit_btn=True, stop_btn=False), sess |
|
|
|
def change_model(new): |
|
visible = new != MODEL_CHOICES[0] |
|
default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT) |
|
return [], create_session(), new, default, gr.update(value=default, visible=visible) |
|
|
|
def stop_response(history, sess): |
|
ensure_stop_event(sess) |
|
sess.stop_event.set() |
|
if history: |
|
history[-1][1] = RESPONSES["RESPONSE_1"] |
|
return history, gr.MultimodalTextbox(value="", interactive=True, submit_btn=True, stop_btn=False), sess |
|
|
|
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: |
|
user_history = gr.State([]) |
|
user_session = gr.State(create_session()) |
|
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "") |
|
custom_prompt_state = gr.State("") |
|
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) |
|
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) |
|
with gr.Accordion(AI_TYPES["AI_TYPE_6"], open=False): |
|
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) |
|
system_prompt = gr.Textbox(label=AI_TYPES["AI_TYPE_7"], lines=2, interactive=True, visible=False) |
|
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model, custom_prompt_state, system_prompt]) |
|
system_prompt.change(fn=lambda x: x, inputs=[system_prompt], outputs=[custom_prompt_state]) |
|
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, custom_prompt_state], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER) |
|
msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session]) |
|
jarvis.queue(default_concurrency_limit=3).launch(max_file_size="1mb") |
|
|