# # SPDX-FileCopyrightText: Hadad # SPDX-License-Identifier: Apache-2.0 # import asyncio import docx import gradio as gr import httpx import json import os import pandas as pd import pdfplumber import pytesseract import random import requests import threading import uuid import zipfile import io from PIL import Image from pathlib import Path from pptx import Presentation from openpyxl import load_workbook os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER") INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA") SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}")) SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM") LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h] LINUX_SERVER_HOSTS_MARKED = set() LINUX_SERVER_HOSTS_ATTEMPTS = {} LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k] LINUX_SERVER_PROVIDER_KEYS_MARKED = set() LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {} LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(","))) AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 8)} RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)} MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) MODEL_CHOICES = list(MODEL_MAPPING.values()) DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None META_TAGS = os.getenv("META_TAGS") ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]")) class SessionWithID(requests.Session): def __init__(sess): super().__init__() sess.session_id = str(uuid.uuid4()) def create_session(): return SessionWithID() def ensure_stop_event(sess): if not hasattr(sess, "stop_event"): sess.stop_event = asyncio.Event() def get_available_items(items, marked): a = [i for i in items if i not in marked] random.shuffle(a) return a def marked_item(item, marked, attempts): marked.add(item) attempts[item] = attempts.get(item, 0) + 1 if attempts[item] >= 3: def remove(): marked.discard(item) attempts.pop(item, None) threading.Timer(300, remove).start() def get_model_key(display): return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY) def extract_pdf_content(fp): content = "" try: with pdfplumber.open(fp) as pdf: for page in pdf.pages: text = page.extract_text() or "" content += text + "\n" if page.images: img_obj = page.to_image(resolution=300) for img in page.images: bbox = (img["x0"], img["top"], img["x1"], img["bottom"]) cropped = img_obj.original.crop(bbox) ocr_text = pytesseract.image_to_string(cropped) if ocr_text.strip(): content += ocr_text + "\n" tables = page.extract_tables() for table in tables: for row in table: cells = [str(cell) for cell in row if cell is not None] if cells: content += "\t".join(cells) + "\n" except Exception as e: content += f"{fp}: {e}" return content.strip() def extract_docx_content(fp): content = "" try: doc = docx.Document(fp) for para in doc.paragraphs: content += para.text + "\n" for table in doc.tables: for row in table.rows: cells = [cell.text for cell in row.cells] content += "\t".join(cells) + "\n" with zipfile.ZipFile(fp) as z: for file in z.namelist(): if file.startswith("word/media/"): data = z.read(file) try: img = Image.open(io.BytesIO(data)) ocr_text = pytesseract.image_to_string(img) if ocr_text.strip(): content += ocr_text + "\n" except: pass except Exception as e: content += f"{fp}: {e}" return content.strip() def extract_excel_content(fp): content = "" try: sheets = pd.read_excel(fp, sheet_name=None) for name, df in sheets.items(): content += f"Sheet: {name}\n" content += df.to_csv(index=False) + "\n" wb = load_workbook(fp, data_only=True) if wb._images: for image in wb._images: img = image.ref if isinstance(img, bytes): try: pil_img = Image.open(io.BytesIO(img)) ocr_text = pytesseract.image_to_string(pil_img) if ocr_text.strip(): content += ocr_text + "\n" except: pass except Exception as e: content += f"{fp}: {e}" return content.strip() def extract_pptx_content(fp): content = "" try: prs = Presentation(fp) for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text") and shape.text: content += shape.text + "\n" if shape.shape_type == 13 and hasattr(shape, "image") and shape.image: try: img = Image.open(io.BytesIO(shape.image.blob)) ocr_text = pytesseract.image_to_string(img) if ocr_text.strip(): content += ocr_text + "\n" except: pass for shape in slide.shapes: if shape.has_table: table = shape.table for row in table.rows: cells = [cell.text for cell in row.cells] content += "\t".join(cells) + "\n" except Exception as e: content += f"{fp}: {e}" return content.strip() def extract_file_content(fp): ext = Path(fp).suffix.lower() if ext == ".pdf": return extract_pdf_content(fp) elif ext in [".doc", ".docx"]: return extract_docx_content(fp) elif ext in [".xlsx", ".xls"]: return extract_excel_content(fp) elif ext in [".ppt", ".pptx"]: return extract_pptx_content(fp) else: try: return Path(fp).read_text(encoding="utf-8").strip() except Exception as e: return f"{fp}: {e}" async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_event): for t in [1, 2]: try: async with httpx.AsyncClient(timeout=t) as client: async with client.stream("POST", host, json={**{"model": model, "messages": msgs, "session_id": sid, "stream": True}, **cfg}, headers={"Authorization": f"Bearer {key}"}) as response: async for line in response.aiter_lines(): if stop_event.is_set(): return if not line: continue if line.startswith("data: "): data = line[6:] if data.strip() == RESPONSES["RESPONSE_10"]: return try: j = json.loads(data) if isinstance(j, dict) and j.get("choices"): ch = j["choices"][0] if ch.get("delta") and isinstance(ch["delta"].get("content"), str): yield ch["delta"]["content"] except: continue except: continue marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) return async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt): ensure_stop_event(sess) if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS): yield RESPONSES["RESPONSE_3"] return if not hasattr(sess, "session_id") or not sess.session_id: sess.session_id = str(uuid.uuid4()) sess.stop_event = asyncio.Event() if not hasattr(sess, "active_candidate"): sess.active_candidate = None model_key = get_model_key(model_display) cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG) msgs = [{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a] prompt = INTERNAL_TRAINING_DATA if model_key == DEFAULT_MODEL_KEY and INTERNAL_TRAINING_DATA else (custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)) msgs.insert(0, {"role": "system", "content": prompt}) msgs.append({"role": "user", "content": user_input}) if sess.active_candidate: async for chunk in fetch_response_stream_async(sess.active_candidate[0], sess.active_candidate[1], model_key, msgs, cfg, sess.session_id, sess.stop_event): if sess.stop_event.is_set(): return yield chunk return keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) hosts = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS) random.shuffle(keys) random.shuffle(hosts) for k in keys: for h in hosts: stream_gen = fetch_response_stream_async(h, k, model_key, msgs, cfg, sess.session_id, sess.stop_event) full_text = "" got_any = False async for chunk in stream_gen: if sess.stop_event.is_set(): return if not got_any: got_any = True sess.active_candidate = (h, k) full_text += chunk yield chunk if got_any and full_text: return yield RESPONSES["RESPONSE_2"] async def respond_async(multi, history, model_display, sess, custom_prompt): ensure_stop_event(sess) sess.stop_event.clear() msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])} if not msg_input["text"] and not msg_input["files"]: yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess return inp = "" for f in msg_input["files"]: fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n" if msg_input["text"]: inp += msg_input["text"] history.append([inp, RESPONSES["RESPONSE_8"]]) yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess queue = asyncio.Queue() async def background(): full = "" async for chunk in chat_with_model_async(history, inp, model_display, sess, custom_prompt): full += chunk await queue.put(chunk) await queue.put(None) return full bg_task = asyncio.create_task(background()) stop_task = asyncio.create_task(sess.stop_event.wait()) first_meaningful_chunk_found = False try: while True: done, _ = await asyncio.wait({stop_task, asyncio.create_task(queue.get())}, return_when=asyncio.FIRST_COMPLETED) if stop_task in done: bg_task.cancel() history[-1][1] = RESPONSES["RESPONSE_1"] yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess sess.stop_event.clear() return for d in done: chunk = d.result() if chunk is None: raise StopAsyncIteration if not first_meaningful_chunk_found: if chunk.strip(): history[-1][1] = chunk first_meaningful_chunk_found = True else: history[-1][1] += chunk yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess except StopAsyncIteration: pass finally: stop_task.cancel() full_response = await bg_task yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess def change_model(new): visible = new != MODEL_CHOICES[0] default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT) return [], create_session(), new, default, gr.update(value=default, visible=visible) def stop_response(history, sess): ensure_stop_event(sess) sess.stop_event.set() if history: history[-1][1] = RESPONSES["RESPONSE_1"] return history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: user_history = gr.State([]) user_session = gr.State(create_session()) selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "") custom_prompt_state = gr.State("") chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) with gr.Accordion(AI_TYPES["AI_TYPE_6"], open=False): model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) system_prompt = gr.Textbox(label=AI_TYPES["AI_TYPE_7"], lines=2, interactive=True, visible=False) model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model, custom_prompt_state, system_prompt]) system_prompt.change(fn=lambda x: x, inputs=[system_prompt], outputs=[custom_prompt_state]) msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, custom_prompt_state], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER) msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session]) jarvis.queue(default_concurrency_limit=3).launch(max_file_size="1mb")