Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import os | |
import shutil | |
# import magic | |
# import ollama | |
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings | |
from langchain_community.vectorstores.qdrant import Qdrant | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_core.documents import Document | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
# from langchain_community.chains import | |
from langchain_community.chat_models import ChatOllama | |
from langchain_chroma import Chroma | |
from hugchat import hugchat | |
from hugchat.login import Login | |
import dotenv | |
from utils import HuggingChat | |
from langchain import PromptTemplate | |
dotenv.load_dotenv() | |
class GradioApp: | |
def __init__(self): | |
# self.llm = ChatOllama(model="phi3:3.8b", base_url="http://localhost:11434", num_gpu=32) | |
template = """ | |
You are a helpful health assistant. These Human will ask you a questions about their pregnancy health. | |
Use following piece of context to answer the question. | |
If you don't know the answer, just say you don't know. | |
Keep the answer within 2 sentences and concise. | |
Context: {context} | |
Question: {question} | |
Answer: | |
""" | |
self.llm = HuggingChat(email = os.getenv("HF_EMAIL") , psw = os.getenv("HF_PASS") ) | |
self.chain = (self.llm | StrOutputParser()) | |
def user(self,user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(self,history): | |
print(history) | |
prompt = history[-1][0] or "" | |
for chunks in self.chain.stream(prompt): | |
history[-1][1] = history[-1][1] or "" | |
history[-1][1] += chunks | |
yield history | |
history[-1][1] = history[-1][1] or "" | |
history[-1][1] += self.chain.invoke(prompt) | |
print(history[-1][1]) | |
print(history) | |
return history | |
with gr.Blocks() as demo: | |
gradio_app = GradioApp() | |
# files = gr.Files(label="Upload Documents and Medical Reports", type="filepath", file_types=["pdf", "docx", "jpg", "jpeg", "png"]) | |
# upload_button = gr.UploadButton(label="Upload Documents and Medical Reports", type="filepath", file_count='multiple', file_types=["pdf", "docx", "jpg", "jpeg", "png"], ) | |
output_text = gr.Markdown(label="Output", value=" ") | |
infer_status = gr.Label("Infer Status: ", visible=False) | |
# upload_button.upload(gradio_app.upload_files, upload_button, [files, output_text]) | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
msg.submit(gradio_app.user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
gradio_app.bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
# demo.queue() | |
demo.launch(share=True) | |