gyugnsu's picture
Duplicate from DragGan/DragGan-Inversion
822c5d5
# Copyright (c) SenseTime Research. All rights reserved.
from edit.edit_helper import conv_warper, decoder, encoder_ifg, encoder_ss, encoder_sefa
import legacy
import subprocess
from typing import List, Optional
import cv2
import click
from torch_utils.models import Generator
import os
import sys
import torch
import numpy as np
sys.path.append(".")
"""
Edit generated images with different SOTA methods.
Notes:
1. We provide some latent directions in the folder, you can play around with them.
2. ''upper_length'' and ''bottom_length'' of ''attr_name'' are available for demo.
3. Layers to control and editing strength are set in edit/edit_config.py.
Examples:
\b
# Editing with InterfaceGAN, StyleSpace, and Sefa
python edit.py --network pretrained_models/stylegan_human_v2_1024.pkl --attr_name upper_length \\
--seeds 61531,61570,61571,61610 --outdir outputs/edit_results
# Editing using inverted latent code
python edit.py ---network outputs/pti/checkpoints/model_test.pkl --attr_name upper_length \\
--outdir outputs/edit_results --real True --real_w_path outputs/pti/embeddings/test/PTI/test/0.pt --real_img_path aligned_image/test.png
"""
@click.command()
@click.pass_context
@click.option('--network', 'ckpt_path', help='Network pickle filename', required=True)
@click.option('--attr_name', help='choose one of the attr: upper_length or bottom_length', type=str, required=True)
@click.option('--trunc', 'truncation', type=float, help='Truncation psi', default=0.8, show_default=True)
@click.option('--gen_video', type=bool, default=True, help='If want to generate video')
@click.option('--combine', type=bool, default=True, help='If want to combine different editing results in the same frame')
@click.option('--seeds', type=legacy.num_range, help='List of random seeds')
@click.option('--outdir', help='Where to save the output images', type=str, required=True, default='outputs/editing', metavar='DIR')
@click.option('--real', type=bool, help='True for editing real image', default=False)
@click.option('--real_w_path', help='Path of latent code for real image')
@click.option('--real_img_path', help='Path of real image, this just concat real image with inverted and edited results together')
def main(
ctx: click.Context,
ckpt_path: str,
attr_name: str,
truncation: float,
gen_video: bool,
combine: bool,
seeds: Optional[List[int]],
outdir: str,
real: str,
real_w_path: str,
real_img_path: str
):
# convert pkl to pth
# if not os.path.exists(ckpt_path.replace('.pkl','.pth')):
legacy.convert(ckpt_path, ckpt_path.replace('.pkl', '.pth'), G_only=real)
ckpt_path = ckpt_path.replace('.pkl', '.pth')
print("start...", flush=True)
config = {"latent": 512, "n_mlp": 8, "channel_multiplier": 2}
generator = Generator(
size=1024,
style_dim=config["latent"],
n_mlp=config["n_mlp"],
channel_multiplier=config["channel_multiplier"]
)
generator.load_state_dict(torch.load(ckpt_path)['g_ema'])
generator.eval().cuda()
with torch.no_grad():
mean_path = os.path.join('edit', 'mean_latent.pkl')
if not os.path.exists(mean_path):
mean_n = 3000
mean_latent = generator.mean_latent(mean_n).detach()
legacy.save_obj(mean_latent, mean_path)
else:
mean_latent = legacy.load_pkl(mean_path).cuda()
finals = []
## -- selected sample seeds -- ##
# seeds = [60948,60965,61174,61210,61511,61598,61610] #bottom -> long
# [60941,61064,61103,61313,61531,61570,61571] # bottom -> short
# [60941,60965,61064,61103,6117461210,61531,61570,61571,61610] # upper --> long
# [60948,61313,61511,61598] # upper --> short
if real:
seeds = [0]
for t in seeds:
if real: # now assume process single real image only
if real_img_path:
real_image = cv2.imread(real_img_path)
real_image = cv2.cvtColor(real_image, cv2.COLOR_BGR2RGB)
import torchvision.transforms as transforms
transform = transforms.Compose( # normalize to (-1, 1)
[transforms.ToTensor(),
transforms.Normalize(mean=(.5, .5, .5), std=(.5, .5, .5))]
)
real_image = transform(real_image).unsqueeze(0).cuda()
test_input = torch.load(real_w_path)
output, _ = generator(
test_input, False, truncation=1, input_is_latent=True, real=True)
else: # generate image from random seeds
test_input = torch.from_numpy(np.random.RandomState(
t).randn(1, 512)).float().cuda() # torch.Size([1, 512])
output, _ = generator(
[test_input], False, truncation=truncation, truncation_latent=mean_latent, real=real)
# interfacegan
style_space, latent, noise = encoder_ifg(
generator, test_input, attr_name, truncation, mean_latent, real=real)
image1 = decoder(generator, style_space, latent, noise)
# stylespace
style_space, latent, noise = encoder_ss(
generator, test_input, attr_name, truncation, mean_latent, real=real)
image2 = decoder(generator, style_space, latent, noise)
# sefa
latent, noise = encoder_sefa(
generator, test_input, attr_name, truncation, mean_latent, real=real)
image3, _ = generator([latent], noise=noise, input_is_latent=True)
if real_img_path:
final = torch.cat(
(real_image, output, image1, image2, image3), 3)
else:
final = torch.cat((output, image1, image2, image3), 3)
# legacy.visual(output, f'{outdir}/{attr_name}_{t:05d}_raw.jpg')
# legacy.visual(image1, f'{outdir}/{attr_name}_{t:05d}_ifg.jpg')
# legacy.visual(image2, f'{outdir}/{attr_name}_{t:05d}_ss.jpg')
# legacy.visual(image3, f'{outdir}/{attr_name}_{t:05d}_sefa.jpg')
if gen_video:
total_step = 90
if real:
video_ifg_path = f"{outdir}/video/ifg_{attr_name}_{real_w_path.split('/')[-2]}/"
video_ss_path = f"{outdir}/video/ss_{attr_name}_{real_w_path.split('/')[-2]}/"
video_sefa_path = f"{outdir}/video/ss_{attr_name}_{real_w_path.split('/')[-2]}/"
else:
video_ifg_path = f"{outdir}/video/ifg_{attr_name}_{t:05d}/"
video_ss_path = f"{outdir}/video/ss_{attr_name}_{t:05d}/"
video_sefa_path = f"{outdir}/video/ss_{attr_name}_{t:05d}/"
video_comb_path = f"{outdir}/video/tmp"
if combine:
if not os.path.exists(video_comb_path):
os.makedirs(video_comb_path)
else:
if not os.path.exists(video_ifg_path):
os.makedirs(video_ifg_path)
if not os.path.exists(video_ss_path):
os.makedirs(video_ss_path)
if not os.path.exists(video_sefa_path):
os.makedirs(video_sefa_path)
for i in range(total_step):
style_space, latent, noise = encoder_ifg(
generator, test_input, attr_name, truncation, mean_latent, step=i, total=total_step, real=real)
image1 = decoder(generator, style_space, latent, noise)
style_space, latent, noise = encoder_ss(
generator, test_input, attr_name, truncation, mean_latent, step=i, total=total_step, real=real)
image2 = decoder(generator, style_space, latent, noise)
latent, noise = encoder_sefa(
generator, test_input, attr_name, truncation, mean_latent, step=i, total=total_step, real=real)
image3, _ = generator(
[latent], noise=noise, input_is_latent=True)
if combine:
if real_img_path:
comb_img = torch.cat(
(real_image, output, image1, image2, image3), 3)
else:
comb_img = torch.cat(
(output, image1, image2, image3), 3)
legacy.visual(comb_img, os.path.join(
video_comb_path, f'{i:05d}.jpg'))
else:
legacy.visual(image1, os.path.join(
video_ifg_path, f'{i:05d}.jpg'))
legacy.visual(image2, os.path.join(
video_ss_path, f'{i:05d}.jpg'))
if combine:
cmd = f"ffmpeg -hide_banner -loglevel error -y -r 30 -i {video_comb_path}/%05d.jpg -vcodec libx264 -pix_fmt yuv420p {video_ifg_path.replace('ifg_', '')[:-1] + '.mp4'}"
subprocess.call(cmd, shell=True)
else:
cmd = f"ffmpeg -hide_banner -loglevel error -y -r 30 -i {video_ifg_path}/%05d.jpg -vcodec libx264 -pix_fmt yuv420p {video_ifg_path[:-1] + '.mp4'}"
subprocess.call(cmd, shell=True)
cmd = f"ffmpeg -hide_banner -loglevel error -y -r 30 -i {video_ss_path}/%05d.jpg -vcodec libx264 -pix_fmt yuv420p {video_ss_path[:-1] + '.mp4'}"
subprocess.call(cmd, shell=True)
# interfacegan, stylespace, sefa
finals.append(final)
final = torch.cat(finals, 2)
legacy.visual(final, os.path.join(outdir, 'final.jpg'))
if __name__ == "__main__":
main()