|
import gradio as gr |
|
from transformers import AutoTokenizer, LlamaForCausalLM |
|
import torch |
|
|
|
|
|
model_name = "bjdwh/UrbanGPT" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = LlamaForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True |
|
) |
|
|
|
def generate_response( |
|
message, |
|
history: list[tuple[str, str]], |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
input_text = message |
|
if history: |
|
input_text = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history]) + f"\nUser: {message}" |
|
|
|
|
|
inputs = tokenizer(input_text, return_tensors="pt", padding=True) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs["input_ids"], |
|
max_length=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
num_return_sequences=1, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
if history: |
|
response = response.split("Assistant: ")[-1].strip() |
|
|
|
yield response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
generate_response, |
|
additional_inputs=[ |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="生成最大长度"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (核采样)", |
|
), |
|
], |
|
title="UrbanGPT 聊天助手", |
|
description="这是一个基于 UrbanGPT 的中文城市规划对话模型", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|