import gradio as gr from transformers import AutoTokenizer, LlamaForCausalLM import torch # 使用 UrbanGPT 模型 model_name = "bjdwh/UrbanGPT" # 加载模型和分词器 tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = LlamaForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True ) def generate_response( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, ): # 格式化输入 input_text = message if history: input_text = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history]) + f"\nUser: {message}" # 编码输入 inputs = tokenizer(input_text, return_tensors="pt", padding=True) # 生成回复 with torch.no_grad(): outputs = model.generate( inputs["input_ids"], max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # 如果有历史对话,需要提取最后的回复 if history: response = response.split("Assistant: ")[-1].strip() yield response # 创建 Gradio 界面 demo = gr.ChatInterface( generate_response, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="生成最大长度"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (核采样)", ), ], title="UrbanGPT 聊天助手", description="这是一个基于 UrbanGPT 的中文城市规划对话模型", ) if __name__ == "__main__": demo.launch()