|
import logging |
|
import os |
|
import time |
|
from typing import List |
|
|
|
import torch |
|
|
|
from eval import verification |
|
from utils.utils_logging import AverageMeter |
|
|
|
|
|
class CallBackVerification(object): |
|
def __init__(self, frequent, rank, val_targets, rec_prefix, image_size=(112, 112)): |
|
self.frequent: int = frequent |
|
self.rank: int = rank |
|
self.highest_acc: float = 0.0 |
|
self.highest_acc_list: List[float] = [0.0] * len(val_targets) |
|
self.ver_list: List[object] = [] |
|
self.ver_name_list: List[str] = [] |
|
if self.rank is 0: |
|
self.init_dataset(val_targets=val_targets, data_dir=rec_prefix, image_size=image_size) |
|
|
|
def ver_test(self, backbone: torch.nn.Module, global_step: int): |
|
results = [] |
|
for i in range(len(self.ver_list)): |
|
acc1, std1, acc2, std2, xnorm, embeddings_list = verification.test( |
|
self.ver_list[i], backbone, 10, 10) |
|
logging.info('[%s][%d]XNorm: %f' % (self.ver_name_list[i], global_step, xnorm)) |
|
logging.info('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' % (self.ver_name_list[i], global_step, acc2, std2)) |
|
if acc2 > self.highest_acc_list[i]: |
|
self.highest_acc_list[i] = acc2 |
|
logging.info( |
|
'[%s][%d]Accuracy-Highest: %1.5f' % (self.ver_name_list[i], global_step, self.highest_acc_list[i])) |
|
results.append(acc2) |
|
|
|
def init_dataset(self, val_targets, data_dir, image_size): |
|
for name in val_targets: |
|
path = os.path.join(data_dir, name + ".bin") |
|
if os.path.exists(path): |
|
data_set = verification.load_bin(path, image_size) |
|
self.ver_list.append(data_set) |
|
self.ver_name_list.append(name) |
|
|
|
def __call__(self, num_update, backbone: torch.nn.Module): |
|
if self.rank is 0 and num_update > 0 and num_update % self.frequent == 0: |
|
backbone.eval() |
|
self.ver_test(backbone, num_update) |
|
backbone.train() |
|
|
|
|
|
class CallBackLogging(object): |
|
def __init__(self, frequent, rank, total_step, batch_size, world_size, writer=None): |
|
self.frequent: int = frequent |
|
self.rank: int = rank |
|
self.time_start = time.time() |
|
self.total_step: int = total_step |
|
self.batch_size: int = batch_size |
|
self.world_size: int = world_size |
|
self.writer = writer |
|
|
|
self.init = False |
|
self.tic = 0 |
|
|
|
def __call__(self, |
|
global_step: int, |
|
loss: AverageMeter, |
|
epoch: int, |
|
fp16: bool, |
|
learning_rate: float, |
|
grad_scaler: torch.cuda.amp.GradScaler): |
|
if self.rank == 0 and global_step > 0 and global_step % self.frequent == 0: |
|
if self.init: |
|
try: |
|
speed: float = self.frequent * self.batch_size / (time.time() - self.tic) |
|
speed_total = speed * self.world_size |
|
except ZeroDivisionError: |
|
speed_total = float('inf') |
|
|
|
time_now = (time.time() - self.time_start) / 3600 |
|
time_total = time_now / ((global_step + 1) / self.total_step) |
|
time_for_end = time_total - time_now |
|
if self.writer is not None: |
|
self.writer.add_scalar('time_for_end', time_for_end, global_step) |
|
self.writer.add_scalar('learning_rate', learning_rate, global_step) |
|
self.writer.add_scalar('loss', loss.avg, global_step) |
|
if fp16: |
|
msg = "Speed %.2f samples/sec Loss %.4f LearningRate %.4f Epoch: %d Global Step: %d " \ |
|
"Fp16 Grad Scale: %2.f Required: %1.f hours" % ( |
|
speed_total, loss.avg, learning_rate, epoch, global_step, |
|
grad_scaler.get_scale(), time_for_end |
|
) |
|
else: |
|
msg = "Speed %.2f samples/sec Loss %.4f LearningRate %.4f Epoch: %d Global Step: %d " \ |
|
"Required: %1.f hours" % ( |
|
speed_total, loss.avg, learning_rate, epoch, global_step, time_for_end |
|
) |
|
logging.info(msg) |
|
loss.reset() |
|
self.tic = time.time() |
|
else: |
|
self.init = True |
|
self.tic = time.time() |
|
|
|
|
|
class CallBackModelCheckpoint(object): |
|
def __init__(self, rank, output="./"): |
|
self.rank: int = rank |
|
self.output: str = output |
|
|
|
def __call__(self, global_step, backbone, partial_fc, ): |
|
if global_step > 100 and self.rank == 0: |
|
path_module = os.path.join(self.output, "backbone.pth") |
|
torch.save(backbone.module.state_dict(), path_module) |
|
logging.info("Pytorch Model Saved in '{}'".format(path_module)) |
|
|
|
if global_step > 100 and partial_fc is not None: |
|
partial_fc.save_params() |
|
|