Spaces:
Sleeping
Sleeping
from __future__ import division | |
import time | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
import numpy as np | |
import cv2 | |
from utils import * | |
import argparse | |
import os | |
import os.path as osp | |
from darknet import Darknet | |
# from preprocess import prep_image, inp_to_image | |
import pandas as pd | |
import random | |
import pickle as pkl | |
import itertools | |
import os | |
if __name__ == '__main__': | |
images = os.path.join('victoria.jpg') | |
batch_size = int(1) | |
confidence = float(0.5) | |
nms_thesh = float(0.4) | |
reso = 416 | |
start = 0 | |
CUDA = torch.cuda.is_available() | |
num_classes = 80 | |
classes = load_classes('data/coco.names') | |
#Set up the neural network | |
model = Darknet("yolov3.cfg") | |
model.load_weights("yolov3.weights") | |
print(' [*] Model Loaded Successfuly') | |
# set model resolution | |
model.net_info["height"] = reso | |
inp_dim = int(model.net_info["height"]) | |
assert inp_dim % 32 == 0 | |
assert inp_dim > 32 | |
# If there's a GPU availible, put the model on GPU | |
if CUDA: | |
model.cuda() | |
# Set the model in evaluation mode | |
model.eval() | |
imlist = [] | |
imlist.append( osp.join(osp.realpath('.') , images) ) | |
batches = list( map( prep_image , imlist , [ inp_dim for x in range( len(imlist) ) ] ) ) | |
im_batches = [x[0] for x in batches] | |
orig_ims = [x[1] for x in batches] | |
im_dim_list = [x[2] for x in batches] | |
print( 'im_dim_list : ' , im_dim_list ) | |
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2) | |
print( 'im_dim_list : after' , im_dim_list ) | |
if CUDA: | |
im_dim_list = im_dim_list.cuda() | |
print('im_batches' , len(im_batches)) | |
batch = im_batches[0] | |
if CUDA: | |
batch = batch.cuda() | |
#Apply offsets to the result predictions | |
#Tranform the predictions as described in the YOLO paper | |
#flatten the prediction vector | |
# B x (bbox cord x no. of anchors) x grid_w x grid_h --> B x bbox x (all the boxes) | |
# Put every proposed box as a row. | |
with torch.no_grad(): | |
prediction = model(Variable(batch), CUDA) | |
# prediction = prediction[:,scale_indices] | |
#get the boxes with object confidence > threshold | |
#Convert the cordinates to absolute coordinates | |
#perform NMS on these boxes, and save the results | |
#I could have done NMS and saving seperately to have a better abstraction | |
#But both these operations require looping, hence | |
#clubbing these ops in one loop instead of two. | |
#loops are slower than vectorised operations. | |
prediction = write_results(prediction, confidence, num_classes, nms = True, nms_conf = nms_thesh) | |
# if type(prediction) == int: | |
# continue | |
end = time.time() | |
# print(end - start) | |
# prediction[:,0] += i*batch_size | |
output = prediction | |
# 1, 1, 1 | |
# print( 'enumerate : ' , batch_size , len(imlist) , min( batch_size , len(imlist) ) ) | |
for im_num, image in enumerate( imlist ): | |
im_id = im_num | |
objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id] | |
print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/batch_size)) | |
print("{0:20s} {1:s}".format("Objects Detected:", " ".join(objs))) | |
print("----------------------------------------------------------") | |
im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long()) | |
scaling_factor = torch.min(inp_dim/im_dim_list,1)[0].view(-1,1) | |
output[:,[1,3]] -= (inp_dim - scaling_factor*im_dim_list[:,0].view(-1,1))/2 | |
output[:,[2,4]] -= (inp_dim - scaling_factor*im_dim_list[:,1].view(-1,1))/2 | |
output[:,1:5] /= scaling_factor | |
for i in range(output.shape[0]): | |
output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0]) | |
output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1]) | |
colors = pkl.load(open("pallete", "rb")) | |
def write(x, batches, results): | |
c1 = tuple(x[1:3].int()) | |
c2 = tuple(x[3:5].int()) | |
img = results[int(x[0])] | |
print( 'img' , int( x[0] ) ) | |
print( 'cls' , int( x[-1] ) ) | |
cls = int(x[-1]) | |
label = "{0}".format(classes[cls]) | |
color = random.choice(colors) | |
cv2.rectangle(img, c1, c2,color, 1) | |
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] | |
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 | |
cv2.rectangle(img, c1, c2,color, -1) | |
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1) | |
return img | |
list(map(lambda x: write(x, im_batches, orig_ims), output)) | |
det_names = pd.Series(imlist).apply(lambda x: "{}/det_{}".format('det',x.split("/")[-1])) | |
print('det_names ',det_names) | |
print('orig_ims ',orig_ims[0].shape) | |
print('output : ',output) | |
list(map(cv2.imwrite, det_names, orig_ims)) | |