Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| # import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import (ControlNetModel, StableDiffusionControlNetPipeline, | |
| StableDiffusionPipeline) | |
| from peft import PeftModel | |
| from PIL import Image | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
| # model_repo_id = "CompVis/stable-diffusion-v1-4" | |
| # model_dropdown = ["stabilityai/sdxl-turbo", "CompVis/stable-diffusion-v1-4"] | |
| models = [ | |
| # "gstranger/kawaiicat-lora-1.4", | |
| "CompVis/stable-diffusion-v1-4", | |
| "stabilityai/sdxl-turbo", | |
| "sd-legacy/stable-diffusion-v1-5", | |
| ] | |
| controlnet_modes = ["canny", "Line Art"] | |
| model_dropdown = [ | |
| "stabilityai/sdxl-turbo", | |
| "CompVis/stable-diffusion-v1-4", | |
| "sd-legacy/stable-diffusion-v1-5", | |
| ] | |
| def process_control_image(image, mode="canny"): | |
| if mode == "canny": | |
| image = np.array(image) | |
| gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
| blurred = cv2.GaussianBlur(gray, (5, 5), 0) | |
| canny = cv2.Canny(blurred, 50, 150) | |
| return Image.fromarray(canny) | |
| return image | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| # pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| # pipe = pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| MODEL_NAME = "CompVis/stable-diffusion-v1-4" | |
| CKPT_DIR = "sd-14-lora-1000" | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def infer( | |
| model_id, | |
| prompt, | |
| negative_prompt, | |
| randomize_seed=False, | |
| width=512, | |
| height=512, | |
| seed = 488, | |
| guidance_scale=7, | |
| num_inference_steps=50, | |
| lora_enable=True, | |
| lora_scale=0.8, | |
| controlnet_enable=False, | |
| control_mode="Line Art", | |
| control_strength=0.8, | |
| control_image=None, | |
| ip_adapter_enable=False, | |
| ip_adapter_scale=0.8, | |
| ip_image=None, | |
| torch_dtype=torch_dtype, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| else: | |
| seed = 488 | |
| generator = torch.Generator().manual_seed(seed) | |
| params = {'prompt': prompt, | |
| 'negative_prompt': negative_prompt, | |
| 'guidance_scale': guidance_scale, | |
| 'num_inference_steps': num_inference_steps, | |
| 'width': width, | |
| 'height': height, | |
| 'generator': generator, | |
| } | |
| print("in infer 1") | |
| print("controlnet_enable", controlnet_enable) | |
| controlnet = None | |
| if controlnet_enable and control_image is not None: | |
| print("in controlnet_enable") | |
| if control_mode == "canny": | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", | |
| torch_dtype=torch_dtype, cache_dir="./models_cache") | |
| else: | |
| control_mode == "Line Art" | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_lineart", | |
| torch_dtype=torch_dtype, cache_dir="./models_cache") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, | |
| controlnet=controlnet, | |
| torch_dtype=torch_dtype, | |
| safety_checker=None) #.to(device) | |
| params['image'] = process_control_image(control_image, control_mode) | |
| params['controlnet_conditioning_scale'] = float(control_strength) | |
| else: | |
| print("step: basic pipeline") | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, | |
| torch_dtype=torch_dtype, | |
| safety_checker=None) #.to(device) | |
| print("step: basic pipeline done!") | |
| if lora_enable: | |
| print("step: lora") | |
| unet_sub_dir = os.path.join(CKPT_DIR, "unet") | |
| text_encoder_sub_dir = os.path.join(CKPT_DIR, "text_encoder") | |
| adapter_name="sd-14-lora" | |
| pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) | |
| pipe.text_encoder = PeftModel.from_pretrained( | |
| pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name | |
| ) | |
| params['cross_attention_kwargs']={"scale": lora_scale} | |
| print("step: lora done!") | |
| if torch_dtype in (torch.float16, torch.bfloat16): | |
| pipe.unet.half() | |
| pipe.text_encoder.half() | |
| if ip_adapter_enable: | |
| print("step: ip_adapter_enable") | |
| pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin") | |
| pipe.set_ip_adapter_scale(ip_adapter_scale) | |
| params['ip_adapter_image'] = process_control_image(ip_image, "") | |
| print("step: ip_adapter_enable done!") | |
| # pipe.to(device) | |
| print("step: start generating") | |
| print(params) | |
| image = pipe(**params | |
| ).images[0] | |
| print("step: generating done!") | |
| return image, seed | |
| examples = [ | |
| "kawaiicat. The cat is sitting. The cat's tail is curled up at the end. The cat is pleased and is enjoying its time.", | |
| "kawaiicat. The cat is sitting upright. The cat is eating some noodles with the chopsticks from a green bowl, which it's holding in his hands.", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # Text-to-Image kawaiicat Stickers") | |
| with gr.Row(): | |
| # Dropdown to select the model from Hugging Face | |
| model_id = gr.Dropdown( | |
| label="Model", | |
| choices=models, | |
| value=models[0], # Default model | |
| ) | |
| lora_scale = gr.Slider( | |
| label="LORA Scale", | |
| minimum=0, | |
| maximum=1, | |
| step=0.01, | |
| value=0.8, | |
| ) | |
| lora_enable = gr.Checkbox(label="Use LORA", value=True) | |
| with gr.Column(): | |
| controlnet_enable = gr.Checkbox(label="Enable ControlNet", value=False) | |
| with gr.Accordion("ControlNet Settings", visible=False) as controlnet_accordion: | |
| control_mode = gr.Dropdown(controlnet_modes, label="Control Mode", value="canny") | |
| control_strength = gr.Slider(0.0, 2.0, value=1.0, step=0.1, label="Control Strength") | |
| control_image = gr.Image(label="Control Image", type="pil") | |
| ip_adapter_enable = gr.Checkbox(label="Enable IP-Adapter", value=False) | |
| with gr.Accordion("IP-Adapter Settings", visible=False) as ipadapter_accordion: | |
| ip_adapter_scale = gr.Slider(0, 1, value=0.5, label="IP-Adapter Scale") | |
| ip_image = gr.Image(label="Reference Image", type="pil") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| value="kawaiicat. The cat is having fun, is smiling." | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter your negative prompt", | |
| value="bad anatomy, crop image, bad face of the cat" | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=True, | |
| value="bad anatomy, crop image, bad face of the cat" | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, # Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, # Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=10.0, # Replace with defaults that work for your model | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=50, # Replace with defaults that work for your model | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| controlnet_enable.change( | |
| lambda x: gr.update(visible=x), | |
| controlnet_enable, | |
| controlnet_accordion | |
| ) | |
| ip_adapter_enable.change( | |
| lambda x: gr.update(visible=x), | |
| ip_adapter_enable, | |
| ipadapter_accordion | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| model_id, | |
| prompt, | |
| negative_prompt, | |
| randomize_seed, | |
| width, | |
| height, | |
| seed, | |
| guidance_scale, | |
| num_inference_steps, | |
| lora_enable, lora_scale, | |
| controlnet_enable, control_mode, control_strength, control_image, | |
| ip_adapter_enable, ip_adapter_scale, ip_image | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |