|
import os |
|
import re |
|
import threading |
|
|
|
import bm25s |
|
import gradio as gr |
|
import gradio_iframe |
|
import spaces |
|
from bm25s.hf import BM25HF |
|
from citations import inseq_citation, inseq_xai_citation, lxt_citation, mirage_citation, pecore_citation |
|
from examples import examples |
|
from lxt.functional import add2, mul2, softmax |
|
from lxt.models.llama import LlamaForCausalLM, attnlrp |
|
from rerankers import Reranker |
|
from style import custom_css |
|
from tqdm import tqdm |
|
from transformers import AutoTokenizer |
|
|
|
from inseq import load_model, register_step_function |
|
from inseq.attr import StepFunctionArgs |
|
from inseq.commands.attribute_context import visualize_attribute_context |
|
from inseq.commands.attribute_context.attribute_context import ( |
|
AttributeContextArgs, |
|
attribute_context_with_model, |
|
) |
|
from inseq.utils.contrast_utils import _setup_contrast_args |
|
|
|
model = None |
|
model_id = "HuggingFaceTB/SmolLM-360M-Instruct" |
|
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type="colbert") |
|
retriever = BM25HF.load_from_hub("xhluca/bm25s-nq-index", load_corpus=True, mmap=True) |
|
|
|
|
|
model_registry = {} |
|
|
|
|
|
def get_model(model_size): |
|
model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct" |
|
if model_id not in model_registry: |
|
hf_model = LlamaForCausalLM.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
attnlrp.register(hf_model) |
|
model = load_model(hf_model, "saliency", tokenizer=tokenizer) |
|
model.bos_token = "<|endoftext|>" |
|
model.bos_token_id = 0 |
|
model_registry[model_id] = model |
|
return model_registry[model_id] |
|
|
|
|
|
def lxt_probability_fn(args: StepFunctionArgs): |
|
logits = args.attribution_model.output2logits(args.forward_output) |
|
target_ids = args.target_ids.reshape(logits.shape[0], 1).to(logits.device) |
|
logits = softmax(logits, dim=-1) |
|
return logits.gather(-1, target_ids).squeeze(-1) |
|
|
|
|
|
def lxt_contrast_prob_fn( |
|
args: StepFunctionArgs, |
|
contrast_sources=None, |
|
contrast_targets=None, |
|
contrast_targets_alignments: list[list[tuple[int, int]]] | None = None, |
|
contrast_force_inputs: bool = False, |
|
skip_special_tokens: bool = False, |
|
): |
|
c_args = _setup_contrast_args( |
|
args, |
|
contrast_sources=contrast_sources, |
|
contrast_targets=contrast_targets, |
|
contrast_targets_alignments=contrast_targets_alignments, |
|
contrast_force_inputs=contrast_force_inputs, |
|
skip_special_tokens=skip_special_tokens, |
|
) |
|
return lxt_probability_fn(c_args) |
|
|
|
|
|
def lxt_contrast_prob_diff_fn( |
|
args: StepFunctionArgs, |
|
contrast_sources=None, |
|
contrast_targets=None, |
|
contrast_targets_alignments: list[list[tuple[int, int]]] | None = None, |
|
contrast_force_inputs: bool = False, |
|
skip_special_tokens: bool = False, |
|
): |
|
model_probs = lxt_probability_fn(args) |
|
contrast_probs = lxt_contrast_prob_fn( |
|
args=args, |
|
contrast_sources=contrast_sources, |
|
contrast_targets=contrast_targets, |
|
contrast_targets_alignments=contrast_targets_alignments, |
|
contrast_force_inputs=contrast_force_inputs, |
|
skip_special_tokens=skip_special_tokens, |
|
).to(model_probs.device) |
|
return add2(model_probs, mul2(contrast_probs, -1)) |
|
|
|
|
|
def set_interactive_settings(rag_setting, retrieve_k, top_k, custom_context): |
|
if rag_setting in ("Retrieve with BM25", "Rerank with ColBERT"): |
|
return ( |
|
gr.Slider(interactive=True), |
|
gr.Slider(interactive=True), |
|
gr.Textbox( |
|
placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.", |
|
interactive=False, |
|
), |
|
) |
|
elif rag_setting == "Use Custom Context": |
|
return ( |
|
gr.Slider(interactive=False), |
|
gr.Slider(interactive=False), |
|
gr.Textbox(placeholder="Insert a custom context...", interactive=True), |
|
) |
|
|
|
|
|
@spaces.GPU() |
|
def generate( |
|
query, |
|
max_new_tokens, |
|
top_p, |
|
temperature, |
|
retrieve_k, |
|
top_k, |
|
rag_setting, |
|
custom_context, |
|
model_size, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
global model, model_id |
|
if rag_setting == "Use Custom Context": |
|
docs = custom_context.split("\n\n") |
|
progress(0.1, desc="Using custom context...") |
|
else: |
|
if not query: |
|
raise gr.Error("Please enter a query.") |
|
progress(0, desc="Retrieving with BM25...") |
|
q = bm25s.tokenize(query) |
|
results = retriever.retrieve(q, k=retrieve_k) |
|
if rag_setting == "Rerank with ColBERT": |
|
progress(0.1, desc="Reranking with ColBERT...") |
|
docs = [x["text"] for x in results.documents[0]] |
|
out = ranker.rank(query=query, docs=docs) |
|
docs = [out.results[i].document.text for i in range(top_k)] |
|
else: |
|
docs = [results.documents[0][i]["text"] for i in range(top_k)] |
|
docs = [re.sub(r"\[\d+\]", "", doc) for doc in docs] |
|
curr_model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct" |
|
if model is None or model.model_name != curr_model_id: |
|
progress(0.2, desc="Loading model...") |
|
model = get_model(model_size) |
|
estimated_time = 20 |
|
tstep = 1 |
|
lm_rag_prompting_example = AttributeContextArgs( |
|
model_name_or_path=model_id, |
|
input_context_text="\n\n".join(docs), |
|
input_current_text=query, |
|
output_template="{current}", |
|
attributed_fn="lxt_contrast_prob_diff", |
|
input_template="<|im_start|>user\n### Context\n{context}\n\n### Query\n{current}<|im_end|>\n<|im_start|>assistant\n", |
|
contextless_input_current_text="<|im_start|>user\n### Query\n{current}<|im_end|>\n<|im_start|>assistant\n", |
|
attribution_method="saliency", |
|
show_viz=False, |
|
show_intermediate_outputs=False, |
|
context_sensitivity_std_threshold=1, |
|
decoder_input_output_separator=" ", |
|
special_tokens_to_keep=["<|im_start|>", "<|endoftext|>"], |
|
generation_kwargs={ |
|
"max_new_tokens": max_new_tokens, |
|
"top_p": top_p, |
|
"temperature": temperature, |
|
}, |
|
attribution_aggregators=["sum"], |
|
rescale_attributions=True, |
|
save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"), |
|
viz_path=os.path.join(os.path.dirname(__file__), "outputs/output.html"), |
|
) |
|
|
|
ret = [None] |
|
|
|
def run_attribute_context(): |
|
ret[0] = attribute_context_with_model(lm_rag_prompting_example, model) |
|
|
|
thread = threading.Thread(target=run_attribute_context) |
|
pbar = tqdm(total=estimated_time, desc="Attributing with LXT...") |
|
thread.start() |
|
while thread.is_alive(): |
|
thread.join(timeout=tstep) |
|
pbar.update(tstep) |
|
pbar.close() |
|
out = ret[0] |
|
html = visualize_attribute_context(out, show_viz=False, return_html=True) |
|
return [ |
|
gradio_iframe.iFrame(html, height=500, visible=True), |
|
gr.DownloadButton( |
|
label="π Download output", |
|
value=os.path.join(os.path.dirname(__file__), "outputs/output.json"), |
|
visible=True, |
|
), |
|
gr.DownloadButton( |
|
label="π Download HTML", |
|
value=os.path.join(os.path.dirname(__file__), "outputs/output.html"), |
|
visible=True, |
|
), |
|
] |
|
|
|
|
|
register_step_function( |
|
lxt_contrast_prob_diff_fn, "lxt_contrast_prob_diff", overwrite=True |
|
) |
|
|
|
|
|
with gr.Blocks(css=custom_css) as demo: |
|
with gr.Row(): |
|
with gr.Column(min_width=500): |
|
gr.HTML( |
|
'<h1><img src="file/img/mirage_logo_white_contour.png" width=300px /></h1>' |
|
) |
|
text = gr.Markdown( |
|
"This demo showcases an end-to-end usage of model internals for RAG answer attribution with the <a href='https://openreview.net/forum?id=XTHfNGI3zT' target='_blank'>PECoRe</a> framework, as described in our <a href='https://arxiv.org/abs/2406.13663' target='_blank'>MIRAGE</a> paper.<br>" |
|
"Insert a query to retrieve relevant contexts, generate an answer and attribute its context-sensitive components. An interactive <a href='https://github.com/google-deepmind/treescope' target='_blank'>Treescope</a> visualization will appear in the green square.<br>" |
|
"π <i>Retrieval is performed on <a href='https://huggingface.co/datasets/google-research-datasets/natural_questions' target='_blank'>Natural Questions</a> using <a href='https://github.com/xhluca/bm25s' target='_blank'>BM25S</a>, with optional reranking via <a href='https://huggingface.co/answerdotai/answerai-colbert-small-v1' target='_blank'>ColBERT</a>." |
|
" <a href='https://huggingface.co/blog/smollm' target='_blank'>SmolLM</a> models are used for generation, while <a href='https://github.com/inseq-team/inseq' target='_blank'>Inseq</a> and <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'>LXT</a> are used for attribution.</i><br>" |
|
"β‘οΈ <i>For more details, see also our <a href='https://huggingface.co/spaces/gsarti/pecore' target='_blank'>PECoRe Demo</a>", |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
query = gr.Textbox( |
|
placeholder="Insert a query for the language model...", |
|
label="Model query", |
|
interactive=True, |
|
lines=2, |
|
) |
|
btn = gr.Button("Submit", variant="primary") |
|
attribute_input_examples = gr.Examples( |
|
examples, |
|
inputs=[query], |
|
examples_per_page=2, |
|
) |
|
with gr.Accordion("βοΈ Parameters", open=False): |
|
with gr.Row(): |
|
model_size = gr.Radio( |
|
["135M", "360M", "1.7B"], |
|
value="360M", |
|
label="Model size", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
rag_setting = gr.Radio( |
|
[ |
|
"Retrieve with BM25", |
|
"Rerank with ColBERT", |
|
"Use Custom Context", |
|
], |
|
value="Rerank with ColBERT", |
|
label="Mode", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
retrieve_k = gr.Slider( |
|
1, |
|
500, |
|
value=100, |
|
step=1, |
|
label="# Docs to Retrieve", |
|
interactive=True, |
|
) |
|
top_k = gr.Slider( |
|
1, |
|
10, |
|
value=3, |
|
step=1, |
|
label="# Docs in Context", |
|
interactive=True, |
|
) |
|
custom_context = gr.Textbox( |
|
placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.", |
|
label="Custom context", |
|
interactive=False, |
|
lines=4, |
|
) |
|
with gr.Row(): |
|
max_new_tokens = gr.Slider( |
|
0, |
|
500, |
|
value=50, |
|
step=5.0, |
|
label="Max new tokens", |
|
interactive=True, |
|
) |
|
top_p = gr.Slider( |
|
0, 1, value=1, step=0.01, label="Top P", interactive=True |
|
) |
|
temperature = gr.Slider( |
|
0, 1, value=0, step=0.01, label="Temperature", interactive=True |
|
) |
|
with gr.Accordion("π Citation", open=False): |
|
gr.Markdown( |
|
"Using PECoRe for model internals-based RAG answer attribution is discussed in:" |
|
) |
|
gr.Code( |
|
mirage_citation, |
|
interactive=False, |
|
label="MIRAGE (Qi, Sarti et al., 2024)", |
|
) |
|
gr.Markdown("To refer to the original PECoRe paper, cite:") |
|
gr.Code( |
|
pecore_citation, |
|
interactive=False, |
|
label="PECoRe (Sarti et al., 2024)", |
|
) |
|
gr.Markdown( |
|
'The Inseq implementation used in this work (<a href="https://inseq.org/en/latest/main_classes/cli.html#attribute-context"><code>inseq attribute-context</code></a>, including this demo) can be cited with:' |
|
) |
|
gr.Code( |
|
inseq_citation, |
|
interactive=False, |
|
label="Inseq (Sarti et al., 2023)", |
|
) |
|
gr.Code( |
|
inseq_xai_citation, |
|
interactive=False, |
|
label="Inseq v0.6 (Sarti et al., 2024)" |
|
) |
|
gr.Markdown( |
|
"The AttnLRP attribution method used in this demo via the LXT library can be cited with:" |
|
) |
|
gr.Code( |
|
lxt_citation, |
|
interactive=False, |
|
label="AttnLRP (Achtibat et al., 2024)", |
|
) |
|
with gr.Column(): |
|
attribute_context_out = gradio_iframe.iFrame(height=400, visible=True) |
|
with gr.Row(equal_height=True): |
|
download_output_file_button = gr.DownloadButton( |
|
"π Download output", |
|
visible=False, |
|
) |
|
download_output_html_button = gr.DownloadButton( |
|
"π Download HTML", |
|
visible=False, |
|
value=os.path.join( |
|
os.path.dirname(__file__), "outputs/output.html" |
|
), |
|
) |
|
with gr.Row(elem_classes="footer-container"): |
|
with gr.Column(): |
|
gr.Markdown( |
|
"""<div class="footer-custom-block"><b>Powered by</b> <a href='https://github.com/inseq-team/inseq' target='_blank'><img src="file/img/inseq_logo_white_contour.png" width=150px /></a> <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'><img src="file/img/lxt_logo.png" width=150px /></a></div>""" |
|
) |
|
with gr.Column(): |
|
with gr.Row(elem_classes="footer-custom-block"): |
|
with gr.Column(scale=0.30, min_width=150): |
|
gr.Markdown( |
|
"""<b>Built by <a href="https://gsarti.com" target="_blank">Gabriele Sarti</a><br> with the support of</b>""" |
|
) |
|
with gr.Column(scale=0.30, min_width=120): |
|
gr.Markdown( |
|
"""<a href='https://www.rug.nl/research/clcg/research/cl/' target='_blank'><img src="file/img/rug_logo_white_contour.png" width=170px /></a>""" |
|
) |
|
with gr.Column(scale=0.30, min_width=120): |
|
gr.Markdown( |
|
"""<a href='https://projects.illc.uva.nl/indeep/' target='_blank'><img src="file/img/indeep_logo_white_contour.png" width=100px /></a>""" |
|
) |
|
|
|
rag_setting.change( |
|
fn=set_interactive_settings, |
|
inputs=[rag_setting, retrieve_k, top_k, custom_context], |
|
outputs=[retrieve_k, top_k, custom_context], |
|
) |
|
|
|
btn.click( |
|
fn=generate, |
|
inputs=[ |
|
query, |
|
max_new_tokens, |
|
top_p, |
|
temperature, |
|
retrieve_k, |
|
top_k, |
|
rag_setting, |
|
custom_context, |
|
model_size, |
|
], |
|
outputs=[ |
|
attribute_context_out, |
|
download_output_file_button, |
|
download_output_html_button, |
|
], |
|
) |
|
|
|
demo.queue(api_open=False, max_size=20).launch( |
|
allowed_paths=["img/", "outputs/"], show_api=False |
|
) |
|
|