|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset |
|
import json |
|
from typing import Tuple, Optional, Any |
|
import cv2 |
|
import random |
|
import os |
|
import math |
|
from PIL import Image, ImageOps |
|
from .normal_utils import worldNormal2camNormal, img2normal, norm_normalize |
|
from icecream import ic |
|
def shift_list(lst, n): |
|
length = len(lst) |
|
n = n % length |
|
return lst[-n:] + lst[:-n] |
|
|
|
|
|
class ObjaverseDataset(Dataset): |
|
def __init__(self, |
|
root_dir: str, |
|
azi_interval: float, |
|
random_views: int, |
|
predict_relative_views: list, |
|
bg_color: Any, |
|
object_list: str, |
|
prompt_embeds_path: str, |
|
img_wh: Tuple[int, int], |
|
validation: bool = False, |
|
num_validation_samples: int = 64, |
|
num_samples: Optional[int] = None, |
|
invalid_list: Optional[str] = None, |
|
trans_norm_system: bool = True, |
|
|
|
side_views_rate: float = 0., |
|
read_normal: bool = True, |
|
read_color: bool = False, |
|
read_depth: bool = False, |
|
mix_color_normal: bool = False, |
|
random_view_and_domain: bool = False, |
|
load_cache: bool = False, |
|
exten: str = '.png', |
|
elevation_list: Optional[str] = None, |
|
with_smpl: Optional[bool] = False, |
|
) -> None: |
|
"""Create a dataset from a folder of images. |
|
If you pass in a root directory it will be searched for images |
|
ending in ext (ext can be a list) |
|
""" |
|
self.root_dir = root_dir |
|
self.fixed_views = int(360 // azi_interval) |
|
self.bg_color = bg_color |
|
self.validation = validation |
|
self.num_samples = num_samples |
|
self.trans_norm_system = trans_norm_system |
|
|
|
self.img_wh = img_wh |
|
self.read_normal = read_normal |
|
self.read_color = read_color |
|
self.read_depth = read_depth |
|
self.mix_color_normal = mix_color_normal |
|
self.random_view_and_domain = random_view_and_domain |
|
self.random_views = random_views |
|
self.load_cache = load_cache |
|
self.total_views = int(self.fixed_views * (self.random_views + 1)) |
|
self.predict_relative_views = predict_relative_views |
|
self.pred_view_nums = len(self.predict_relative_views) |
|
self.exten = exten |
|
self.side_views_rate = side_views_rate |
|
self.with_smpl = with_smpl |
|
if self.with_smpl: |
|
self.smpl_image_path = 'smpl_image' |
|
self.smpl_normal_path = 'smpl_normal' |
|
|
|
|
|
ic(self.total_views) |
|
ic(self.fixed_views) |
|
ic(self.predict_relative_views) |
|
ic(self.with_smpl) |
|
|
|
self.objects = [] |
|
if object_list is not None: |
|
for dataset_list in object_list: |
|
with open(dataset_list, 'r') as f: |
|
objects = json.load(f) |
|
self.objects.extend(objects) |
|
else: |
|
self.objects = os.listdir(self.root_dir) |
|
|
|
|
|
self.trans_cv2gl_mat = np.linalg.inv(np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])) |
|
self.fix_cam_poses = [] |
|
camera_path = os.path.join(self.root_dir, self.objects[0], 'camera') |
|
for vid in range(0, self.total_views, self.random_views+1): |
|
cam_info = np.load(f'{camera_path}/{vid:03d}.npy', allow_pickle=True).item() |
|
assert cam_info['camera'] == 'ortho', 'Only support predict ortho camera !!!' |
|
self.fix_cam_poses.append(cam_info['extrinsic']) |
|
random.shuffle(self.objects) |
|
|
|
|
|
if elevation_list: |
|
with open(elevation_list, 'r') as f: |
|
ele_list = [o.strip() for o in f.readlines()] |
|
self.objects = set(ele_list) & set(self.objects) |
|
|
|
self.all_objects = set(self.objects) |
|
self.all_objects = list(self.all_objects) |
|
|
|
self.validation = validation |
|
if not validation: |
|
self.all_objects = self.all_objects[:-num_validation_samples] |
|
|
|
|
|
else: |
|
self.all_objects = self.all_objects[-num_validation_samples:] |
|
|
|
if num_samples is not None: |
|
self.all_objects = self.all_objects[:num_samples] |
|
ic(len(self.all_objects)) |
|
print(f"loaded {len(self.all_objects)} in the dataset") |
|
|
|
normal_prompt_embedding = torch.load(f'{prompt_embeds_path}/normal_embeds.pt') |
|
color_prompt_embedding = torch.load(f'{prompt_embeds_path}/clr_embeds.pt') |
|
if len(self.predict_relative_views) == 6: |
|
self.normal_prompt_embedding = normal_prompt_embedding |
|
self.color_prompt_embedding = color_prompt_embedding |
|
elif len(self.predict_relative_views) == 4: |
|
self.normal_prompt_embedding = torch.stack([normal_prompt_embedding[0], normal_prompt_embedding[2], normal_prompt_embedding[3], normal_prompt_embedding[4], normal_prompt_embedding[6]] , 0) |
|
self.color_prompt_embedding = torch.stack([color_prompt_embedding[0], color_prompt_embedding[2], color_prompt_embedding[3], color_prompt_embedding[4], color_prompt_embedding[6]] , 0) |
|
|
|
|
|
if len(self.predict_relative_views) == 6: |
|
self.flip_views = [3, 4] |
|
elif len(self.predict_relative_views) == 4: |
|
self.flip_views = [2, 3] |
|
|
|
|
|
self.backup_data = self.__getitem_norm__(0) |
|
|
|
def trans_cv2gl(self, rt): |
|
r, t = rt[:3, :3], rt[:3, -1] |
|
r = np.matmul(self.trans_cv2gl_mat, r) |
|
t = np.matmul(self.trans_cv2gl_mat, t) |
|
return np.concatenate([r, t[:, None]], axis=-1) |
|
|
|
def cartesian_to_spherical(self, xyz): |
|
ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) |
|
xy = xyz[:,0]**2 + xyz[:,1]**2 |
|
z = np.sqrt(xy + xyz[:,2]**2) |
|
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) |
|
|
|
azimuth = np.arctan2(xyz[:,1], xyz[:,0]) |
|
return np.array([theta, azimuth, z]) |
|
|
|
def get_T(self, target_RT, cond_RT): |
|
R, T = target_RT[:3, :3], target_RT[:3, -1] |
|
T_target = -R.T @ T |
|
|
|
R, T = cond_RT[:3, :3], cond_RT[:3, -1] |
|
T_cond = -R.T @ T |
|
|
|
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :]) |
|
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :]) |
|
|
|
d_theta = theta_target - theta_cond |
|
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) |
|
d_z = z_target - z_cond |
|
|
|
|
|
return d_theta, d_azimuth |
|
|
|
def get_bg_color(self): |
|
if self.bg_color == 'white': |
|
bg_color = np.array([1., 1., 1.], dtype=np.float32) |
|
elif self.bg_color == 'black': |
|
bg_color = np.array([0., 0., 0.], dtype=np.float32) |
|
elif self.bg_color == 'gray': |
|
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32) |
|
elif self.bg_color == 'random': |
|
bg_color = np.random.rand(3) |
|
elif self.bg_color == 'three_choices': |
|
white = np.array([1., 1., 1.], dtype=np.float32) |
|
black = np.array([0., 0., 0.], dtype=np.float32) |
|
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32) |
|
bg_color = random.choice([white, black, gray]) |
|
elif isinstance(self.bg_color, float): |
|
bg_color = np.array([self.bg_color] * 3, dtype=np.float32) |
|
else: |
|
raise NotImplementedError |
|
return bg_color |
|
|
|
def crop_image(self, top_left, img): |
|
size = max(self.img_wh) |
|
tar_size = size - top_left * 2 |
|
|
|
alpha_np = np.asarray(img)[:, :, 3] |
|
|
|
|
|
coords = np.argwhere(alpha_np > 0.5) |
|
x_min, y_min = coords.min(axis=0) |
|
x_max, y_max = coords.max(axis=0) |
|
|
|
img = img.crop((x_min, y_min, x_max, y_max)).resize((tar_size, tar_size)) |
|
img = ImageOps.expand(img, border=(top_left, top_left, top_left, top_left), fill=0) |
|
return img |
|
|
|
def load_cropped_img(self, img_path, bg_color, top_left, return_type='np'): |
|
rgba = Image.open(img_path) |
|
rgba = self.crop_image(top_left, rgba) |
|
rgba = np.array(rgba) |
|
rgba = rgba.astype(np.float32) / 255. |
|
img, alpha = rgba[..., :3], rgba[..., 3:4] |
|
|
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
alpha = torch.from_numpy(alpha) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img, alpha |
|
|
|
|
|
def load_image(self, img_path, bg_color, alpha=None, return_type='np'): |
|
|
|
|
|
|
|
|
|
rgba = np.array(Image.open(img_path).resize(self.img_wh)) |
|
rgba = rgba.astype(np.float32) / 255. |
|
|
|
img = rgba[..., :3] |
|
if alpha is None: |
|
assert rgba.shape[-1] == 4 |
|
alpha = rgba[..., 3:4] |
|
assert alpha.sum() > 1e-8, 'w/o foreground' |
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
alpha = torch.from_numpy(alpha) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img, alpha |
|
|
|
|
|
def load_normal(self, img_path, bg_color, alpha, RT_w2c_cond=None, return_type='np'): |
|
normal_np = np.array(Image.open(img_path).resize(self.img_wh))[:, :, :3] |
|
assert np.var(normal_np) > 1e-8, 'pure normal' |
|
normal_cv = img2normal(normal_np) |
|
|
|
normal_relative_cv = worldNormal2camNormal(RT_w2c_cond[:3, :3], normal_cv) |
|
normal_relative_cv = norm_normalize(normal_relative_cv) |
|
|
|
normal_relative_gl = normal_relative_cv |
|
normal_relative_gl[..., 1:] = -normal_relative_gl[..., 1:] |
|
|
|
img = (normal_relative_cv*0.5 + 0.5).astype(np.float32) |
|
|
|
if alpha.shape[-1] != 1: |
|
alpha = alpha[:, :, None] |
|
|
|
|
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img |
|
|
|
def load_halfbody_normal(self, img_path, bg_color, alpha, RT_w2c_cond=None, return_type='np'): |
|
normal_np = np.array(Image.open(img_path).resize(self.img_wh).crop((256, 0, 512, 256)).resize(self.img_wh))[:, :, :3] |
|
assert np.var(normal_np) > 1e-8, 'pure normal' |
|
normal_cv = img2normal(normal_np) |
|
|
|
normal_relative_cv = worldNormal2camNormal(RT_w2c_cond[:3, :3], normal_cv) |
|
normal_relative_cv = norm_normalize(normal_relative_cv) |
|
|
|
|
|
normal_relative_gl = normal_relative_cv |
|
normal_relative_gl[..., 1:] = -normal_relative_gl[..., 1:] |
|
|
|
img = (normal_relative_cv*0.5 + 0.5).astype(np.float32) |
|
|
|
if alpha.shape[-1] != 1: |
|
alpha = alpha[:, :, None] |
|
|
|
|
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img |
|
|
|
def __len__(self): |
|
return len(self.all_objects) |
|
|
|
def load_halfbody_image(self, img_path, bg_color, alpha=None, return_type='np'): |
|
|
|
|
|
rgba = np.array(Image.open(img_path).resize(self.img_wh).crop((256, 0, 512, 256)).resize(self.img_wh)) |
|
rgba = rgba.astype(np.float32) / 255. |
|
|
|
img = rgba[..., :3] |
|
if alpha is None: |
|
assert rgba.shape[-1] == 4 |
|
alpha = rgba[..., 3:4] |
|
assert alpha.sum() > 1e-8, 'w/o foreground' |
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
alpha = torch.from_numpy(alpha) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img, alpha |
|
|
|
def __getitem_norm__(self, index, debug_object=None): |
|
|
|
bg_color = self.get_bg_color() |
|
if debug_object is not None: |
|
object_name = debug_object |
|
else: |
|
object_name = self.all_objects[index % len(self.all_objects)] |
|
face_info = np.load(f'{self.root_dir}/{object_name}/face_info.npy', allow_pickle=True).item() |
|
|
|
if self.side_views_rate > 0 and random.random() < self.side_views_rate: |
|
front_fixed_idx = random.choice(face_info['top3_vid']) |
|
else: |
|
front_fixed_idx = face_info['top3_vid'][0] |
|
with_face_idx = list(face_info.keys()) |
|
with_face_idx.remove('top3_vid') |
|
|
|
assert front_fixed_idx in with_face_idx, 'not detected face' |
|
|
|
if self.validation: |
|
cond_ele0_idx = front_fixed_idx |
|
cond_random_idx = 0 |
|
else: |
|
if object_name[:9] == 'realistic': |
|
cond_ele0_idx = random.choice(range(self.fixed_views)) |
|
cond_random_idx = random.choice(range(self.random_views+1)) |
|
else: |
|
cond_vid = front_fixed_idx |
|
cond_ele0_idx = cond_vid // (self.random_views + 1) |
|
cond_ele0_vid = cond_ele0_idx * (self.random_views + 1) |
|
cond_random_idx = 0 |
|
|
|
|
|
cond_ele0_vid = cond_ele0_idx * (self.random_views + 1) |
|
cond_vid = cond_ele0_vid + cond_random_idx |
|
cond_ele0_w2c = self.fix_cam_poses[cond_ele0_idx] |
|
|
|
img_tensors_in = [ |
|
self.load_image(f"{self.root_dir}/{object_name}/image/{cond_vid:03d}{self.exten}", bg_color, return_type='pt')[0].permute(2, 0, 1) |
|
] * self.pred_view_nums + [ |
|
self.load_halfbody_image(f"{self.root_dir}/{object_name}/image/{cond_vid:03d}{self.exten}", bg_color, return_type='pt')[0].permute(2, 0, 1) |
|
] |
|
|
|
|
|
pred_vids = [(cond_ele0_vid + i * (self.random_views+1)) % self.total_views for i in self.predict_relative_views] |
|
|
|
img_tensors_out = [] |
|
normal_tensors_out = [] |
|
smpl_tensors_in = [] |
|
for i, vid in enumerate(pred_vids): |
|
|
|
img_tensor, alpha_ = self.load_image(f"{self.root_dir}/{object_name}/image/{vid:03d}{self.exten}", bg_color, return_type='pt') |
|
img_tensor = img_tensor.permute(2, 0, 1) |
|
if i in self.flip_views: img_tensor = torch.flip(img_tensor, [2]) |
|
img_tensors_out.append(img_tensor) |
|
|
|
|
|
normal_tensor = self.load_normal(f"{self.root_dir}/{object_name}/normal/{vid:03d}{self.exten}", bg_color, alpha_.numpy(), RT_w2c_cond=cond_ele0_w2c[:3, :], return_type="pt").permute(2, 0, 1) |
|
if i in self.flip_views: normal_tensor = torch.flip(normal_tensor, [2]) |
|
normal_tensors_out.append(normal_tensor) |
|
|
|
|
|
if self.with_smpl: |
|
smpl_image_tensor, smpl_alpha_ = self.load_image(f"{self.root_dir}/{object_name}/{self.smpl_image_path}/{vid:03d}{self.exten}", bg_color, return_type='pt') |
|
smpl_image_tensor = smpl_image_tensor.permute(2, 0, 1) |
|
if i in self.flip_views: smpl_image_tensor = torch.flip(smpl_image_tensor, [2]) |
|
smpl_tensors_in.append(smpl_image_tensor) |
|
|
|
|
|
if i == 0: |
|
face_clr_out, face_alpha_out = self.load_halfbody_image(f"{self.root_dir}/{object_name}/image/{vid:03d}{self.exten}", bg_color, return_type='pt') |
|
face_clr_out = face_clr_out.permute(2, 0, 1) |
|
face_nrm_out = self.load_halfbody_normal(f"{self.root_dir}/{object_name}/normal/{vid:03d}{self.exten}", bg_color, face_alpha_out.numpy(), RT_w2c_cond=cond_ele0_w2c[:3, :], return_type="pt").permute(2, 0, 1) |
|
if self.with_smpl: |
|
face_smpl_in = self.load_halfbody_image(f"{self.root_dir}/{object_name}/{self.smpl_image_path}/{vid:03d}{self.exten}", bg_color, return_type='pt')[0].permute(2, 0, 1) |
|
|
|
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() |
|
img_tensors_out.append(face_clr_out) |
|
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() |
|
normal_tensors_out.append(face_nrm_out) |
|
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() |
|
|
|
if self.with_smpl: |
|
smpl_tensors_in = smpl_tensors_in + [face_smpl_in] |
|
smpl_tensors_in = torch.stack(smpl_tensors_in, dim=0).float() |
|
|
|
item = { |
|
'id': object_name.replace('/', '_'), |
|
'vid':cond_vid, |
|
'imgs_in': img_tensors_in, |
|
'imgs_out': img_tensors_out, |
|
'normals_out': normal_tensors_out, |
|
'normal_prompt_embeddings': self.normal_prompt_embedding, |
|
'color_prompt_embeddings': self.color_prompt_embedding, |
|
} |
|
if self.with_smpl: |
|
item.update({'smpl_imgs_in': smpl_tensors_in}) |
|
return item |
|
|
|
def __getitem__(self, index): |
|
try: |
|
data = self.__getitem_norm__(index) |
|
return data |
|
except: |
|
print("load error ", self.all_objects[index%len(self.all_objects)] ) |
|
return self.backup_data |
|
|
|
|
|
def draw_kps(image, kps): |
|
nose_pos = kps[2].astype(np.int32) |
|
top_left = nose_pos - 64 |
|
bottom_right = nose_pos + 64 |
|
image_cv = image.copy() |
|
img = cv2.rectangle(image_cv, tuple(top_left), tuple(bottom_right), (0, 255, 0), 2) |
|
return img |
|
|
|
if __name__ == "__main__": |
|
|
|
from torch.utils.data import DataLoader |
|
from torchvision.utils import make_grid |
|
from PIL import ImageDraw, ImageFont |
|
def draw_text(img, text, pos, color=(128, 128, 128)): |
|
draw = ImageDraw.Draw(img) |
|
|
|
font = ImageFont.load_default() |
|
font = font.font_variant(size=10) |
|
draw.text(pos, text, color, font=font) |
|
return img |
|
random.seed(11) |
|
train_params = dict( |
|
root_dir='/aifs4su/mmcode/lipeng/human_8view_with_smplx/', |
|
azi_interval=45., |
|
random_views=0, |
|
predict_relative_views=[0,2,4,6], |
|
bg_color='white', |
|
object_list=['../../data_lists/human_only_scan_with_smplx.json'], |
|
img_wh=(768, 768), |
|
validation=False, |
|
num_validation_samples=10, |
|
read_normal=True, |
|
read_color=True, |
|
read_depth=False, |
|
|
|
random_view_and_domain=False, |
|
load_cache=False, |
|
exten='.png', |
|
prompt_embeds_path='fixed_prompt_embeds_7view', |
|
side_views_rate=0.1, |
|
with_smpl=True |
|
) |
|
train_dataset = ObjaverseDataset(**train_params) |
|
data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0) |
|
if False: |
|
case = 'CustomHumans/0593_00083_06_00101' |
|
batch = train_dataset.__getitem_norm__(0, case) |
|
imgs = [] |
|
obj_name = batch['id'][:8] |
|
imgs_in = batch['imgs_in'] |
|
imgs_out = batch['imgs_out'] |
|
normal_out = batch['normals_out'] |
|
imgs_vis = torch.cat([imgs_in[0:1], imgs_in[-1:], imgs_out, normal_out], 0) |
|
img_vis = make_grid(imgs_vis, nrow=16).permute(1, 2,0) |
|
img_vis = (img_vis.numpy() * 255).astype(np.uint8) |
|
img_vis = Image.fromarray(img_vis) |
|
img_vis = draw_text(img_vis, obj_name, (5, 1)) |
|
img_vis = torch.from_numpy(np.array(img_vis)).permute(2, 0, 1) / 255. |
|
imgs.append(img_vis) |
|
imgs = torch.stack(imgs, dim=0) |
|
img_grid = make_grid(imgs, nrow=4, padding=0) |
|
img_grid = img_grid.permute(1, 2, 0).numpy() |
|
img_grid = (img_grid * 255).astype(np.uint8) |
|
img_grid = Image.fromarray(img_grid) |
|
img_grid.save(f'../../debug/{case.replace("/", "_")}.png') |
|
else: |
|
imgs = [] |
|
i = 0 |
|
for batch in data_loader: |
|
|
|
if i < 4: |
|
i += 1 |
|
obj_name = batch['id'][0][:8] |
|
imgs_in = batch['imgs_in'].squeeze(0) |
|
smpl_in = batch['smpl_imgs_in'].squeeze(0) |
|
imgs_out = batch['imgs_out'].squeeze(0) |
|
normal_out = batch['normals_out'].squeeze(0) |
|
imgs_vis = torch.cat([imgs_in[0:1], imgs_in[-1:], smpl_in, imgs_out, normal_out], 0) |
|
img_vis = make_grid(imgs_vis, nrow=12).permute(1, 2,0) |
|
img_vis = (img_vis.numpy() * 255).astype(np.uint8) |
|
print(img_vis.shape) |
|
|
|
|
|
|
|
|
|
img_vis = Image.fromarray(img_vis) |
|
img_vis = draw_text(img_vis, obj_name, (5, 1)) |
|
img_vis = torch.from_numpy(np.array(img_vis)).permute(2, 0, 1) / 255. |
|
imgs.append(img_vis) |
|
else: |
|
break |
|
imgs = torch.stack(imgs, dim=0) |
|
img_grid = make_grid(imgs, nrow=1, padding=0) |
|
img_grid = img_grid.permute(1, 2, 0).numpy() |
|
img_grid = (img_grid * 255).astype(np.uint8) |
|
img_grid = Image.fromarray(img_grid) |
|
img_grid.save('../../debug/noele_imgs_out_10.png') |
|
|
|
|
|
|
|
|
|
|
|
|