|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from lib.renderer.mesh import load_scan, compute_tangent, compute_normal, load_obj_mesh_mtl |
|
from lib.dataset.mesh_util import projection |
|
from lib.renderer.gl.prt_render import PRTRender |
|
from lib.renderer.camera import Camera |
|
import os |
|
import cv2 |
|
import math |
|
import random |
|
import numpy as np |
|
|
|
|
|
def render_result(rndr, shader_id, path, mask=False): |
|
|
|
cam_render = rndr.get_color(shader_id) |
|
cam_render = cv2.cvtColor(cam_render, cv2.COLOR_RGBA2BGRA) |
|
|
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
if shader_id != 2: |
|
cv2.imwrite(path, np.uint8(255.0 * cam_render)) |
|
else: |
|
cam_render[:, :, -1] -= 0.5 |
|
cam_render[:, :, -1] *= 2.0 |
|
if not mask: |
|
cv2.imwrite(path, np.uint8(255.0 / 2.0 * (cam_render + 1.0))) |
|
else: |
|
cv2.imwrite(path, np.uint8(-1.0 * cam_render[:, :, [3]])) |
|
|
|
|
|
def make_rotate(rx, ry, rz): |
|
sinX = np.sin(rx) |
|
sinY = np.sin(ry) |
|
sinZ = np.sin(rz) |
|
|
|
cosX = np.cos(rx) |
|
cosY = np.cos(ry) |
|
cosZ = np.cos(rz) |
|
|
|
Rx = np.zeros((3, 3)) |
|
Rx[0, 0] = 1.0 |
|
Rx[1, 1] = cosX |
|
Rx[1, 2] = -sinX |
|
Rx[2, 1] = sinX |
|
Rx[2, 2] = cosX |
|
|
|
Ry = np.zeros((3, 3)) |
|
Ry[0, 0] = cosY |
|
Ry[0, 2] = sinY |
|
Ry[1, 1] = 1.0 |
|
Ry[2, 0] = -sinY |
|
Ry[2, 2] = cosY |
|
|
|
Rz = np.zeros((3, 3)) |
|
Rz[0, 0] = cosZ |
|
Rz[0, 1] = -sinZ |
|
Rz[1, 0] = sinZ |
|
Rz[1, 1] = cosZ |
|
Rz[2, 2] = 1.0 |
|
|
|
R = np.matmul(np.matmul(Rz, Ry), Rx) |
|
return R |
|
|
|
|
|
def rotateSH(SH, R): |
|
SHn = SH |
|
|
|
|
|
SHn[1] = R[1, 1] * SH[1] - R[1, 2] * SH[2] + R[1, 0] * SH[3] |
|
SHn[2] = -R[2, 1] * SH[1] + R[2, 2] * SH[2] - R[2, 0] * SH[3] |
|
SHn[3] = R[0, 1] * SH[1] - R[0, 2] * SH[2] + R[0, 0] * SH[3] |
|
|
|
|
|
SHn[4:, 0] = rotateBand2(SH[4:, 0], R) |
|
SHn[4:, 1] = rotateBand2(SH[4:, 1], R) |
|
SHn[4:, 2] = rotateBand2(SH[4:, 2], R) |
|
|
|
return SHn |
|
|
|
|
|
def rotateBand2(x, R): |
|
s_c3 = 0.94617469575 |
|
s_c4 = -0.31539156525 |
|
s_c5 = 0.54627421529 |
|
|
|
s_c_scale = 1.0 / 0.91529123286551084 |
|
s_c_scale_inv = 0.91529123286551084 |
|
|
|
s_rc2 = 1.5853309190550713 * s_c_scale |
|
s_c4_div_c3 = s_c4 / s_c3 |
|
s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0 |
|
|
|
s_scale_dst2 = s_c3 * s_c_scale_inv |
|
s_scale_dst4 = s_c5 * s_c_scale_inv |
|
|
|
sh0 = x[3] + x[4] + x[4] - x[1] |
|
sh1 = x[0] + s_rc2 * x[2] + x[3] + x[4] |
|
sh2 = x[0] |
|
sh3 = -x[3] |
|
sh4 = -x[1] |
|
|
|
r2x = R[0][0] + R[0][1] |
|
r2y = R[1][0] + R[1][1] |
|
r2z = R[2][0] + R[2][1] |
|
|
|
r3x = R[0][0] + R[0][2] |
|
r3y = R[1][0] + R[1][2] |
|
r3z = R[2][0] + R[2][2] |
|
|
|
r4x = R[0][1] + R[0][2] |
|
r4y = R[1][1] + R[1][2] |
|
r4z = R[2][1] + R[2][2] |
|
|
|
sh0_x = sh0 * R[0][0] |
|
sh0_y = sh0 * R[1][0] |
|
d0 = sh0_x * R[1][0] |
|
d1 = sh0_y * R[2][0] |
|
d2 = sh0 * (R[2][0] * R[2][0] + s_c4_div_c3) |
|
d3 = sh0_x * R[2][0] |
|
d4 = sh0_x * R[0][0] - sh0_y * R[1][0] |
|
|
|
sh1_x = sh1 * R[0][2] |
|
sh1_y = sh1 * R[1][2] |
|
d0 += sh1_x * R[1][2] |
|
d1 += sh1_y * R[2][2] |
|
d2 += sh1 * (R[2][2] * R[2][2] + s_c4_div_c3) |
|
d3 += sh1_x * R[2][2] |
|
d4 += sh1_x * R[0][2] - sh1_y * R[1][2] |
|
|
|
sh2_x = sh2 * r2x |
|
sh2_y = sh2 * r2y |
|
d0 += sh2_x * r2y |
|
d1 += sh2_y * r2z |
|
d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2) |
|
d3 += sh2_x * r2z |
|
d4 += sh2_x * r2x - sh2_y * r2y |
|
|
|
sh3_x = sh3 * r3x |
|
sh3_y = sh3 * r3y |
|
d0 += sh3_x * r3y |
|
d1 += sh3_y * r3z |
|
d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2) |
|
d3 += sh3_x * r3z |
|
d4 += sh3_x * r3x - sh3_y * r3y |
|
|
|
sh4_x = sh4 * r4x |
|
sh4_y = sh4 * r4y |
|
d0 += sh4_x * r4y |
|
d1 += sh4_y * r4z |
|
d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2) |
|
d3 += sh4_x * r4z |
|
d4 += sh4_x * r4x - sh4_y * r4y |
|
|
|
dst = x |
|
dst[0] = d0 |
|
dst[1] = -d1 |
|
dst[2] = d2 * s_scale_dst2 |
|
dst[3] = -d3 |
|
dst[4] = d4 * s_scale_dst4 |
|
|
|
return dst |
|
|
|
|
|
def load_calib(param, render_size=512): |
|
|
|
ortho_ratio = param['ortho_ratio'] |
|
|
|
scale = param['scale'] |
|
|
|
center = param['center'] |
|
|
|
R = param['R'] |
|
|
|
translate = -np.matmul(R, center).reshape(3, 1) |
|
extrinsic = np.concatenate([R, translate], axis=1) |
|
extrinsic = np.concatenate( |
|
[extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0) |
|
|
|
scale_intrinsic = np.identity(4) |
|
scale_intrinsic[0, 0] = scale / ortho_ratio |
|
scale_intrinsic[1, 1] = -scale / ortho_ratio |
|
scale_intrinsic[2, 2] = scale / ortho_ratio |
|
|
|
uv_intrinsic = np.identity(4) |
|
uv_intrinsic[0, 0] = 1.0 / float(render_size // 2) |
|
uv_intrinsic[1, 1] = 1.0 / float(render_size // 2) |
|
uv_intrinsic[2, 2] = 1.0 / float(render_size // 2) |
|
|
|
intrinsic = np.matmul(uv_intrinsic, scale_intrinsic) |
|
calib = np.concatenate([extrinsic, intrinsic], axis=0) |
|
return calib |
|
|
|
|
|
def render_prt_ortho(out_path, |
|
folder_name, |
|
subject_name, |
|
shs, |
|
rndr, |
|
rndr_uv, |
|
im_size, |
|
angl_step=4, |
|
n_light=1, |
|
pitch=[0]): |
|
cam = Camera(width=im_size, height=im_size) |
|
cam.ortho_ratio = 0.4 * (512 / im_size) |
|
cam.near = -100 |
|
cam.far = 100 |
|
cam.sanity_check() |
|
|
|
|
|
mesh_file = os.path.join(folder_name, subject_name + '_100k.obj') |
|
if not os.path.exists(mesh_file): |
|
print('ERROR: obj file does not exist!!', mesh_file) |
|
return |
|
prt_file = os.path.join(folder_name, 'bounce', 'bounce0.txt') |
|
if not os.path.exists(prt_file): |
|
print('ERROR: prt file does not exist!!!', prt_file) |
|
return |
|
face_prt_file = os.path.join(folder_name, 'bounce', 'face.npy') |
|
if not os.path.exists(face_prt_file): |
|
print('ERROR: face prt file does not exist!!!', prt_file) |
|
return |
|
text_file = os.path.join(folder_name, 'tex', subject_name + '_dif_2k.jpg') |
|
if not os.path.exists(text_file): |
|
print('ERROR: dif file does not exist!!', text_file) |
|
return |
|
|
|
texture_image = cv2.imread(text_file) |
|
texture_image = cv2.cvtColor(texture_image, cv2.COLOR_BGR2RGB) |
|
|
|
vertices, faces, normals, faces_normals, textures, face_textures = load_scan( |
|
mesh_file, with_normal=True, with_texture=True) |
|
vmin = vertices.min(0) |
|
vmax = vertices.max(0) |
|
up_axis = 1 if (vmax - vmin).argmax() == 1 else 2 |
|
|
|
vmed = np.median(vertices, 0) |
|
vmed[up_axis] = 0.5 * (vmax[up_axis] + vmin[up_axis]) |
|
y_scale = 180 / (vmax[up_axis] - vmin[up_axis]) |
|
|
|
rndr.set_norm_mat(y_scale, vmed) |
|
rndr_uv.set_norm_mat(y_scale, vmed) |
|
|
|
tan, bitan = compute_tangent(vertices, faces, normals, textures, |
|
face_textures) |
|
prt = np.loadtxt(prt_file) |
|
face_prt = np.load(face_prt_file) |
|
rndr.set_mesh(vertices, faces, normals, faces_normals, textures, |
|
face_textures, prt, face_prt, tan, bitan) |
|
rndr.set_albedo(texture_image) |
|
|
|
rndr_uv.set_mesh(vertices, faces, normals, faces_normals, textures, |
|
face_textures, prt, face_prt, tan, bitan) |
|
rndr_uv.set_albedo(texture_image) |
|
|
|
os.makedirs(os.path.join(out_path, 'GEO', 'OBJ', subject_name), |
|
exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'PARAM', subject_name), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'RENDER', subject_name), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'MASK', subject_name), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'UV_RENDER', subject_name), |
|
exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'UV_MASK', subject_name), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'UV_POS', subject_name), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'UV_NORMAL', subject_name), |
|
exist_ok=True) |
|
|
|
if not os.path.exists(os.path.join(out_path, 'val.txt')): |
|
f = open(os.path.join(out_path, 'val.txt'), 'w') |
|
f.close() |
|
|
|
|
|
cmd = 'cp %s %s' % (mesh_file, |
|
os.path.join(out_path, 'GEO', 'OBJ', subject_name)) |
|
print(cmd) |
|
os.system(cmd) |
|
|
|
for p in pitch: |
|
for y in tqdm(range(0, 360, angl_step)): |
|
R = np.matmul(make_rotate(math.radians(p), 0, 0), |
|
make_rotate(0, math.radians(y), 0)) |
|
if up_axis == 2: |
|
R = np.matmul(R, make_rotate(math.radians(90), 0, 0)) |
|
|
|
rndr.rot_matrix = R |
|
rndr_uv.rot_matrix = R |
|
rndr.set_camera(cam) |
|
rndr_uv.set_camera(cam) |
|
|
|
for j in range(n_light): |
|
sh_id = random.randint(0, shs.shape[0] - 1) |
|
sh = shs[sh_id] |
|
sh_angle = 0.2 * np.pi * (random.random() - 0.5) |
|
sh = rotateSH(sh, make_rotate(0, sh_angle, 0).T) |
|
|
|
dic = { |
|
'sh': sh, |
|
'ortho_ratio': cam.ortho_ratio, |
|
'scale': y_scale, |
|
'center': vmed, |
|
'R': R |
|
} |
|
|
|
rndr.set_sh(sh) |
|
rndr.analytic = False |
|
rndr.use_inverse_depth = False |
|
rndr.display() |
|
|
|
out_all_f = rndr.get_color(0) |
|
out_mask = out_all_f[:, :, 3] |
|
out_all_f = cv2.cvtColor(out_all_f, cv2.COLOR_RGBA2BGR) |
|
|
|
np.save( |
|
os.path.join(out_path, 'PARAM', subject_name, |
|
'%d_%d_%02d.npy' % (y, p, j)), dic) |
|
cv2.imwrite( |
|
os.path.join(out_path, 'RENDER', subject_name, |
|
'%d_%d_%02d.jpg' % (y, p, j)), |
|
255.0 * out_all_f) |
|
cv2.imwrite( |
|
os.path.join(out_path, 'MASK', subject_name, |
|
'%d_%d_%02d.png' % (y, p, j)), |
|
255.0 * out_mask) |
|
|
|
rndr_uv.set_sh(sh) |
|
rndr_uv.analytic = False |
|
rndr_uv.use_inverse_depth = False |
|
rndr_uv.display() |
|
|
|
uv_color = rndr_uv.get_color(0) |
|
uv_color = cv2.cvtColor(uv_color, cv2.COLOR_RGBA2BGR) |
|
cv2.imwrite( |
|
os.path.join(out_path, 'UV_RENDER', subject_name, |
|
'%d_%d_%02d.jpg' % (y, p, j)), |
|
255.0 * uv_color) |
|
|
|
if y == 0 and j == 0 and p == pitch[0]: |
|
uv_pos = rndr_uv.get_color(1) |
|
uv_mask = uv_pos[:, :, 3] |
|
cv2.imwrite( |
|
os.path.join(out_path, 'UV_MASK', subject_name, |
|
'00.png'), 255.0 * uv_mask) |
|
|
|
data = { |
|
'default': uv_pos[:, :, :3] |
|
} |
|
pyexr.write( |
|
os.path.join(out_path, 'UV_POS', subject_name, |
|
'00.exr'), data) |
|
|
|
uv_nml = rndr_uv.get_color(2) |
|
uv_nml = cv2.cvtColor(uv_nml, cv2.COLOR_RGBA2BGR) |
|
cv2.imwrite( |
|
os.path.join(out_path, 'UV_NORMAL', subject_name, |
|
'00.png'), 255.0 * uv_nml) |
|
|