|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
def index(feat, uv): |
|
''' |
|
:param feat: [B, C, H, W] image features |
|
:param uv: [B, 2, N] uv coordinates in the image plane, range [0, 1] |
|
:return: [B, C, N] image features at the uv coordinates |
|
''' |
|
uv = uv.transpose(1, 2) |
|
|
|
(B, N, _) = uv.shape |
|
C = feat.shape[1] |
|
|
|
if uv.shape[-1] == 3: |
|
|
|
|
|
uv = uv.unsqueeze(2).unsqueeze(3) |
|
else: |
|
uv = uv.unsqueeze(2) |
|
|
|
|
|
|
|
samples = torch.nn.functional.grid_sample( |
|
feat, uv, align_corners=True) |
|
|
|
return samples.view(B, C, N) |
|
|
|
|
|
def grid_sample(image, optical): |
|
N, C, IH, IW = image.shape |
|
_, H, W, _ = optical.shape |
|
|
|
ix = optical[..., 0] |
|
iy = optical[..., 1] |
|
|
|
ix = ((ix + 1) / 2) * (IW-1); |
|
iy = ((iy + 1) / 2) * (IH-1); |
|
with torch.no_grad(): |
|
ix_nw = torch.floor(ix); |
|
iy_nw = torch.floor(iy); |
|
ix_ne = ix_nw + 1; |
|
iy_ne = iy_nw; |
|
ix_sw = ix_nw; |
|
iy_sw = iy_nw + 1; |
|
ix_se = ix_nw + 1; |
|
iy_se = iy_nw + 1; |
|
|
|
nw = (ix_se - ix) * (iy_se - iy) |
|
ne = (ix - ix_sw) * (iy_sw - iy) |
|
sw = (ix_ne - ix) * (iy - iy_ne) |
|
se = (ix - ix_nw) * (iy - iy_nw) |
|
|
|
with torch.no_grad(): |
|
torch.clamp(ix_nw, 0, IW-1, out=ix_nw) |
|
torch.clamp(iy_nw, 0, IH-1, out=iy_nw) |
|
|
|
torch.clamp(ix_ne, 0, IW-1, out=ix_ne) |
|
torch.clamp(iy_ne, 0, IH-1, out=iy_ne) |
|
|
|
torch.clamp(ix_sw, 0, IW-1, out=ix_sw) |
|
torch.clamp(iy_sw, 0, IH-1, out=iy_sw) |
|
|
|
torch.clamp(ix_se, 0, IW-1, out=ix_se) |
|
torch.clamp(iy_se, 0, IH-1, out=iy_se) |
|
|
|
image = image.view(N, C, IH * IW) |
|
|
|
|
|
nw_val = torch.gather(image, 2, (iy_nw * IW + ix_nw).long().view(N, 1, H * W).repeat(1, C, 1)) |
|
ne_val = torch.gather(image, 2, (iy_ne * IW + ix_ne).long().view(N, 1, H * W).repeat(1, C, 1)) |
|
sw_val = torch.gather(image, 2, (iy_sw * IW + ix_sw).long().view(N, 1, H * W).repeat(1, C, 1)) |
|
se_val = torch.gather(image, 2, (iy_se * IW + ix_se).long().view(N, 1, H * W).repeat(1, C, 1)) |
|
|
|
out_val = (nw_val.view(N, C, H, W) * nw.view(N, 1, H, W) + |
|
ne_val.view(N, C, H, W) * ne.view(N, 1, H, W) + |
|
sw_val.view(N, C, H, W) * sw.view(N, 1, H, W) + |
|
se_val.view(N, C, H, W) * se.view(N, 1, H, W)) |
|
|
|
return out_val |
|
|
|
def orthogonal(points, calibrations, transforms=None): |
|
''' |
|
Compute the orthogonal projections of 3D points into the image plane by given projection matrix |
|
:param points: [B, 3, N] Tensor of 3D points |
|
:param calibrations: [B, 3, 4] Tensor of projection matrix |
|
:param transforms: [B, 2, 3] Tensor of image transform matrix |
|
:return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane |
|
''' |
|
rot = calibrations[:, :3, :3] |
|
trans = calibrations[:, :3, 3:4] |
|
pts = torch.baddbmm(trans, rot, points) |
|
if transforms is not None: |
|
scale = transforms[:2, :2] |
|
shift = transforms[:2, 2:3] |
|
pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) |
|
return pts |
|
|
|
|
|
def perspective(points, calibrations, transforms=None): |
|
''' |
|
Compute the perspective projections of 3D points into the image plane by given projection matrix |
|
:param points: [Bx3xN] Tensor of 3D points |
|
:param calibrations: [Bx3x4] Tensor of projection matrix |
|
:param transforms: [Bx2x3] Tensor of image transform matrix |
|
:return: xy: [Bx2xN] Tensor of xy coordinates in the image plane |
|
''' |
|
rot = calibrations[:, :3, :3] |
|
trans = calibrations[:, :3, 3:4] |
|
homo = torch.baddbmm(trans, rot, points) |
|
xy = homo[:, :2, :] / homo[:, 2:3, :] |
|
if transforms is not None: |
|
scale = transforms[:2, :2] |
|
shift = transforms[:2, 2:3] |
|
xy = torch.baddbmm(shift, scale, xy) |
|
|
|
xyz = torch.cat([xy, homo[:, 2:3, :]], 1) |
|
return xyz |
|
|