|
""" Parts of the U-Net model """ |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class DoubleConv(nn.Module): |
|
"""(convolution => [BN] => ReLU) * 2""" |
|
|
|
def __init__(self, in_channels, out_channels, mid_channels=None): |
|
super().__init__() |
|
if not mid_channels: |
|
mid_channels = out_channels |
|
self.double_conv = nn.Sequential( |
|
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(mid_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
def forward(self, x): |
|
return self.double_conv(x) |
|
|
|
|
|
class Down(nn.Module): |
|
"""Downscaling with maxpool then double conv""" |
|
|
|
def __init__(self, in_channels, out_channels): |
|
super().__init__() |
|
self.maxpool_conv = nn.Sequential( |
|
nn.MaxPool2d(2), |
|
DoubleConv(in_channels, out_channels) |
|
) |
|
|
|
def forward(self, x): |
|
return self.maxpool_conv(x) |
|
|
|
|
|
class Up(nn.Module): |
|
"""Upscaling then double conv""" |
|
|
|
def __init__(self, in_channels, out_channels, bilinear=True): |
|
super().__init__() |
|
|
|
|
|
if bilinear: |
|
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) |
|
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) |
|
else: |
|
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) |
|
self.conv = DoubleConv(in_channels, out_channels) |
|
|
|
def forward(self, x1, x2): |
|
x1 = self.up(x1) |
|
|
|
diffY = x2.size()[2] - x1.size()[2] |
|
diffX = x2.size()[3] - x1.size()[3] |
|
|
|
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, |
|
diffY // 2, diffY - diffY // 2]) |
|
|
|
|
|
|
|
x = torch.cat([x2, x1], dim=1) |
|
return self.conv(x) |
|
|
|
|
|
class OutConv(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(OutConv, self).__init__() |
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
|
|
""" Full assembly of the parts to form the complete network """ |
|
|
|
|
|
|
|
class UNet(nn.Module): |
|
def __init__(self, n_channels, n_classes, bilinear=False): |
|
super(UNet, self).__init__() |
|
self.n_channels = n_channels |
|
self.n_classes = n_classes |
|
self.bilinear = bilinear |
|
|
|
self.inc = (DoubleConv(n_channels, 64)) |
|
self.down1 = (Down(64, 128)) |
|
self.down2 = (Down(128, 256)) |
|
self.down3 = (Down(256, 512)) |
|
factor = 2 if bilinear else 1 |
|
self.down4 = (Down(512, 1024 // factor)) |
|
self.up1 = (Up(1024, 512 // factor, bilinear)) |
|
self.up2 = (Up(512, 256 // factor, bilinear)) |
|
self.up3 = (Up(256, 128 // factor, bilinear)) |
|
self.up4 = (Up(128, 64, bilinear)) |
|
self.outc = (OutConv(64, n_classes)) |
|
|
|
def forward(self, x): |
|
x1 = self.inc(x) |
|
x2 = self.down1(x1) |
|
x3 = self.down2(x2) |
|
x4 = self.down3(x3) |
|
x5 = self.down4(x4) |
|
x = self.up1(x5, x4) |
|
x = self.up2(x, x3) |
|
x = self.up3(x, x2) |
|
x = self.up4(x, x1) |
|
logits = self.outc(x) |
|
return logits |
|
|
|
def use_checkpointing(self): |
|
self.inc = torch.utils.checkpoint(self.inc) |
|
self.down1 = torch.utils.checkpoint(self.down1) |
|
self.down2 = torch.utils.checkpoint(self.down2) |
|
self.down3 = torch.utils.checkpoint(self.down3) |
|
self.down4 = torch.utils.checkpoint(self.down4) |
|
self.up1 = torch.utils.checkpoint(self.up1) |
|
self.up2 = torch.utils.checkpoint(self.up2) |
|
self.up3 = torch.utils.checkpoint(self.up3) |
|
self.up4 = torch.utils.checkpoint(self.up4) |
|
self.outc = torch.utils.checkpoint(self.outc) |