|
from os import sep |
|
from pickle import TRUE |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from timm.models.registry import register_model |
|
from timm.models.vision_transformer import _cfg |
|
|
|
import numpy as np |
|
|
|
__all__ = [ |
|
'p2t_tiny', 'p2t_small', 'p2t_base', 'p2t_large' |
|
] |
|
|
|
|
|
class IRB(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, ksize=3, act_layer=nn.Hardswish, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0) |
|
self.act = act_layer() |
|
self.conv = nn.Conv2d(hidden_features, hidden_features, kernel_size=ksize, padding=ksize//2, stride=1, groups=hidden_features) |
|
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x, H, W): |
|
B, N, C = x.shape |
|
x = x.permute(0,2,1).reshape(B, C, H, W) |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.conv(x) |
|
x = self.act(x) |
|
x = self.fc2(x) |
|
return x.reshape(B, C, -1).permute(0,2,1) |
|
|
|
|
|
class PoolingAttention(nn.Module): |
|
def __init__(self, dim, num_heads=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., |
|
pool_ratios=[1,2,3,6]): |
|
|
|
super().__init__() |
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.num_elements = np.array([t*t for t in pool_ratios]).sum() |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.q = nn.Sequential(nn.Linear(dim, dim, bias=qkv_bias)) |
|
self.kv = nn.Sequential(nn.Linear(dim, dim * 2, bias=qkv_bias)) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.pool_ratios = pool_ratios |
|
self.pools = nn.ModuleList() |
|
|
|
self.norm = nn.LayerNorm(dim) |
|
|
|
def forward(self, x, H, W, d_convs=None): |
|
B, N, C = x.shape |
|
|
|
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
pools = [] |
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) |
|
for (pool_ratio, l) in zip(self.pool_ratios, d_convs): |
|
pool = F.adaptive_avg_pool2d(x_, (round(H/pool_ratio), round(W/pool_ratio))) |
|
pool = pool + l(pool) |
|
pools.append(pool.view(B, C, -1)) |
|
|
|
pools = torch.cat(pools, dim=2) |
|
pools = self.norm(pools.permute(0,2,1)) |
|
|
|
kv = self.kv(pools).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
k, v = kv[0], kv[1] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v) |
|
x = x.transpose(1,2).contiguous().reshape(B, N, C) |
|
|
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, pool_ratios=[12,16,20,24]): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = PoolingAttention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, pool_ratios=pool_ratios) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = IRB(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=nn.Hardswish, drop=drop, ksize=3) |
|
|
|
def forward(self, x, H, W, d_convs=None): |
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W, d_convs=d_convs)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) |
|
|
|
return x |
|
|
|
class PatchEmbed(nn.Module): |
|
""" (Overlapped) Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, kernel_size=3, in_chans=3, embed_dim=768, overlap=True): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
|
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ |
|
f"img_size {img_size} should be divided by patch_size {patch_size}." |
|
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] |
|
self.num_patches = self.H * self.W |
|
if not overlap: |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
else: |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=kernel_size//2) |
|
|
|
self.norm = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
_, _, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
|
|
return x, (H, W) |
|
|
|
|
|
|
|
class PyramidPoolingTransformer(nn.Module): |
|
def __init__(self, img_size=512, patch_size=2, in_chans=3, num_classes=1000, embed_dims=[64, 256, 320, 512], |
|
num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, qk_scale=None, drop_rate=0., |
|
attn_drop_rate=0., drop_path_rate=0.1, norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
depths=[2, 2, 9, 3]): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.depths = depths |
|
|
|
self.embed_dims = embed_dims |
|
|
|
|
|
pool_ratios = [[12,16,20,24], [6,8,10,12], [3,4,5,6], [1,2,3,4]] |
|
|
|
self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=4, kernel_size=7, in_chans=in_chans, |
|
embed_dim=embed_dims[0], overlap=True) |
|
|
|
self.patch_embed2 = PatchEmbed(img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0], |
|
embed_dim=embed_dims[1], overlap=True) |
|
self.patch_embed3 = PatchEmbed(img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1], |
|
embed_dim=embed_dims[2], overlap=True) |
|
self.patch_embed4 = PatchEmbed(img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2], |
|
embed_dim=embed_dims[3], overlap=True) |
|
|
|
self.d_convs1 = nn.ModuleList([nn.Conv2d(embed_dims[0], embed_dims[0], kernel_size=3, stride=1, padding=1, groups=embed_dims[0]) for temp in pool_ratios[0]]) |
|
self.d_convs2 = nn.ModuleList([nn.Conv2d(embed_dims[1], embed_dims[1], kernel_size=3, stride=1, padding=1, groups=embed_dims[1]) for temp in pool_ratios[1]]) |
|
self.d_convs3 = nn.ModuleList([nn.Conv2d(embed_dims[2], embed_dims[2], kernel_size=3, stride=1, padding=1, groups=embed_dims[2]) for temp in pool_ratios[2]]) |
|
self.d_convs4 = nn.ModuleList([nn.Conv2d(embed_dims[3], embed_dims[3], kernel_size=3, stride=1, padding=1, groups=embed_dims[3]) for temp in pool_ratios[3]]) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
|
|
|
|
ksize = 3 |
|
|
|
self.block1 = nn.ModuleList([Block( |
|
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[0]) |
|
for i in range(depths[0])]) |
|
|
|
|
|
cur += depths[0] |
|
self.block2 = nn.ModuleList([Block( |
|
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[1]) |
|
for i in range(depths[1])]) |
|
|
|
cur += depths[1] |
|
|
|
|
|
self.block3 = nn.ModuleList([Block( |
|
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[2]) |
|
for i in range(depths[2])]) |
|
|
|
cur += depths[2] |
|
|
|
self.block4 = nn.ModuleList([Block( |
|
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[3]) |
|
for i in range(depths[3])]) |
|
|
|
|
|
self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() |
|
self.gap = nn.AdaptiveAvgPool1d(1) |
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
|
|
def reset_drop_path(self, drop_path_rate): |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] |
|
cur = 0 |
|
for i in range(self.depths[0]): |
|
self.block1[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[0] |
|
for i in range(self.depths[1]): |
|
self.block2[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[1] |
|
for i in range(self.depths[2]): |
|
self.block3[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[2] |
|
for i in range(self.depths[3]): |
|
self.block4[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
|
|
return {'cls_token'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
|
|
|
|
x, (H, W) = self.patch_embed1(x) |
|
|
|
for idx, blk in enumerate(self.block1): |
|
x = blk(x, H, W, self.d_convs1) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) |
|
|
|
|
|
x, (H, W) = self.patch_embed2(x) |
|
|
|
for idx, blk in enumerate(self.block2): |
|
x = blk(x, H, W, self.d_convs2) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x |
|
|
|
def forward_features_for_fpn(self, x): |
|
outs = [] |
|
|
|
B = x.shape[0] |
|
|
|
|
|
x, (H, W) = self.patch_embed1(x) |
|
|
|
for idx, blk in enumerate(self.block1): |
|
x = blk(x, H, W, self.d_convs1) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) |
|
outs.append(x) |
|
|
|
|
|
x, (H, W) = self.patch_embed2(x) |
|
|
|
for idx, blk in enumerate(self.block2): |
|
x = blk(x, H, W, self.d_convs2) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) |
|
outs.append(x) |
|
|
|
x, (H, W) = self.patch_embed3(x) |
|
|
|
for idx, blk in enumerate(self.block3): |
|
x = blk(x, H, W, self.d_convs3) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) |
|
outs.append(x) |
|
|
|
|
|
x, (H, W) = self.patch_embed4(x) |
|
|
|
for idx, blk in enumerate(self.block4): |
|
x = blk(x, H, W, self.d_convs4) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) |
|
outs.append(x) |
|
|
|
return outs |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
|
|
|
|
return x |
|
|
|
def forward_for_fpn(self, x): |
|
return self.forward_features_for_fpn(x) |
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
@register_model |
|
def p2t_tiny(pretrained=False, **kwargs): |
|
model = PyramidPoolingTransformer( |
|
patch_size=4, embed_dims=[48, 96, 240, 384], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 6, 3], |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
|
|
return model |
|
|
|
@register_model |
|
def p2t_small(pretrained=True, **kwargs): |
|
model = PyramidPoolingTransformer( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 9, 3], **kwargs) |
|
model.default_cfg = _cfg() |
|
|
|
return model |
|
|
|
@register_model |
|
def p2t_base(pretrained=False, **kwargs): |
|
model = PyramidPoolingTransformer( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
|
|
return model |
|
|
|
@register_model |
|
def p2t_medium(pretrained=False, **kwargs): |
|
model = PyramidPoolingTransformer( |
|
patch_size=4, embed_dims=[64, 128, 384, 512], num_heads=[1, 2, 6, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 15, 3], |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
|
|
return model |
|
|
|
@register_model |
|
def p2t_large(pretrained=False, **kwargs): |
|
model = PyramidPoolingTransformer( |
|
patch_size=4, embed_dims=[64, 128, 320, 640], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
|
|
return model |
|
|