|
import torch |
|
import igl |
|
import numpy as np |
|
|
|
@torch.no_grad() |
|
def igl_flips( |
|
vertices:np.array, |
|
faces:np.array, |
|
target_vertices:np.array, |
|
target_faces:np.array, |
|
)->tuple[np.array,np.array]: |
|
|
|
full_vertices = vertices[faces] |
|
face_centers = full_vertices.mean(axis=1) |
|
_,ind,points = igl.point_mesh_squared_distance(face_centers,target_vertices,target_faces) |
|
target_faces = target_faces[ind] |
|
corners = target_vertices[target_faces] |
|
bary = igl.barycentric_coordinates_tri(points,corners[:,0].copy(),corners[:,1].copy(),corners[:,2].copy()) |
|
target_normals = igl.per_vertex_normals(target_vertices,target_faces,igl.PER_VERTEX_NORMALS_WEIGHTING_TYPE_AREA) |
|
corner_normals = target_normals[target_faces] |
|
ref_normals = (bary[:,:,None] * corner_normals).sum(axis=1) |
|
face_normals = igl.per_face_normals(vertices,faces,np.array([0,0,0],dtype=np.float32)) |
|
flip = np.sum(ref_normals * face_normals, axis=-1)<0 |
|
flipped_area = np.sum(flip * np.linalg.norm(face_normals,axis=-1)) |
|
total_area = np.sum(np.linalg.norm(face_normals,axis=-1)) |
|
ratio = flipped_area / total_area |
|
return flip, ratio |
|
|
|
|
|
@torch.no_grad() |
|
def igl_distance( |
|
vertices:np.array, |
|
faces:np.array, |
|
target_vertices:np.array, |
|
target_faces:np.array, |
|
): |
|
|
|
dist1_sq,_,_ = igl.point_mesh_squared_distance(vertices,target_vertices,target_faces) |
|
dist2_sq,_,_ = igl.point_mesh_squared_distance(target_vertices,vertices,faces) |
|
vertex_distance = np.sqrt(dist1_sq) |
|
|
|
rms_distance = ((dist1_sq.mean()+dist2_sq.mean())/2)**.5 |
|
max_distance = max(dist1_sq.max(),dist2_sq.max())**.5 |
|
|
|
return vertex_distance,rms_distance,max_distance |