|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def plot_mask2D(mask, |
|
title="", |
|
point_coords=None, |
|
figsize=10, |
|
point_marker_size=5): |
|
''' |
|
Simple plotting tool to show intermediate mask predictions and points |
|
where PointRend is applied. |
|
|
|
Args: |
|
mask (Tensor): mask prediction of shape HxW |
|
title (str): title for the plot |
|
point_coords ((Tensor, Tensor)): x and y point coordinates |
|
figsize (int): size of the figure to plot |
|
point_marker_size (int): marker size for points |
|
''' |
|
|
|
H, W = mask.shape |
|
plt.figure(figsize=(figsize, figsize)) |
|
if title: |
|
title += ", " |
|
plt.title("{}resolution {}x{}".format(title, H, W), fontsize=30) |
|
plt.ylabel(H, fontsize=30) |
|
plt.xlabel(W, fontsize=30) |
|
plt.xticks([], []) |
|
plt.yticks([], []) |
|
plt.imshow(mask.detach(), |
|
interpolation="nearest", |
|
cmap=plt.get_cmap('gray')) |
|
if point_coords is not None: |
|
plt.scatter(x=point_coords[0], |
|
y=point_coords[1], |
|
color="red", |
|
s=point_marker_size, |
|
clip_on=True) |
|
plt.xlim(-0.5, W - 0.5) |
|
plt.ylim(H - 0.5, -0.5) |
|
plt.show() |
|
|
|
|
|
def plot_mask3D(mask=None, |
|
title="", |
|
point_coords=None, |
|
figsize=1500, |
|
point_marker_size=8, |
|
interactive=True): |
|
''' |
|
Simple plotting tool to show intermediate mask predictions and points |
|
where PointRend is applied. |
|
|
|
Args: |
|
mask (Tensor): mask prediction of shape DxHxW |
|
title (str): title for the plot |
|
point_coords ((Tensor, Tensor, Tensor)): x and y and z point coordinates |
|
figsize (int): size of the figure to plot |
|
point_marker_size (int): marker size for points |
|
''' |
|
import trimesh |
|
import vtkplotter |
|
from skimage import measure |
|
|
|
vp = vtkplotter.Plotter(title=title, size=(figsize, figsize)) |
|
vis_list = [] |
|
|
|
if mask is not None: |
|
mask = mask.detach().to("cpu").numpy() |
|
mask = mask.transpose(2, 1, 0) |
|
|
|
|
|
verts, faces, normals, values = measure.marching_cubes_lewiner( |
|
mask, 0.5, gradient_direction='ascent') |
|
|
|
|
|
mesh = trimesh.Trimesh(verts, faces) |
|
mesh.visual.face_colors = [200, 200, 250, 100] |
|
vis_list.append(mesh) |
|
|
|
if point_coords is not None: |
|
point_coords = torch.stack(point_coords, 1).to("cpu").numpy() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pc = vtkplotter.Points(point_coords, r=point_marker_size, c='red') |
|
vis_list.append(pc) |
|
|
|
vp.show(*vis_list, |
|
bg="white", |
|
axes=1, |
|
interactive=interactive, |
|
azimuth=30, |
|
elevation=30) |
|
|
|
|
|
def create_grid3D(min, max, steps): |
|
if type(min) is int: |
|
min = (min, min, min) |
|
if type(max) is int: |
|
max = (max, max, max) |
|
if type(steps) is int: |
|
steps = (steps, steps, steps) |
|
arrangeX = torch.linspace(min[0], max[0], steps[0]).long() |
|
arrangeY = torch.linspace(min[1], max[1], steps[1]).long() |
|
arrangeZ = torch.linspace(min[2], max[2], steps[2]).long() |
|
gridD, girdH, gridW = torch.meshgrid([arrangeZ, arrangeY, arrangeX]) |
|
coords = torch.stack([gridW, girdH, |
|
gridD]) |
|
coords = coords.view(3, -1).t() |
|
return coords |
|
|
|
|
|
def create_grid2D(min, max, steps): |
|
if type(min) is int: |
|
min = (min, min) |
|
if type(max) is int: |
|
max = (max, max) |
|
if type(steps) is int: |
|
steps = (steps, steps) |
|
arrangeX = torch.linspace(min[0], max[0], steps[0]).long() |
|
arrangeY = torch.linspace(min[1], max[1], steps[1]).long() |
|
girdH, gridW = torch.meshgrid([arrangeY, arrangeX]) |
|
coords = torch.stack([gridW, girdH]) |
|
coords = coords.view(2, -1).t() |
|
return coords |
|
|
|
|
|
class SmoothConv2D(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size=3): |
|
super().__init__() |
|
assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}" |
|
self.padding = (kernel_size - 1) // 2 |
|
|
|
weight = torch.ones( |
|
(in_channels, out_channels, kernel_size, kernel_size), |
|
dtype=torch.float32) / (kernel_size**2) |
|
self.register_buffer('weight', weight) |
|
|
|
def forward(self, input): |
|
return F.conv2d(input, self.weight, padding=self.padding) |
|
|
|
|
|
class SmoothConv3D(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size=3): |
|
super().__init__() |
|
assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}" |
|
self.padding = (kernel_size - 1) // 2 |
|
|
|
weight = torch.ones( |
|
(in_channels, out_channels, kernel_size, kernel_size, kernel_size), |
|
dtype=torch.float32) / (kernel_size**3) |
|
self.register_buffer('weight', weight) |
|
|
|
def forward(self, input): |
|
return F.conv3d(input, self.weight, padding=self.padding) |
|
|
|
|
|
def build_smooth_conv3D(in_channels=1, |
|
out_channels=1, |
|
kernel_size=3, |
|
padding=1): |
|
smooth_conv = torch.nn.Conv3d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
padding=padding) |
|
smooth_conv.weight.data = torch.ones( |
|
(in_channels, out_channels, kernel_size, kernel_size, kernel_size), |
|
dtype=torch.float32) / (kernel_size**3) |
|
smooth_conv.bias.data = torch.zeros(out_channels) |
|
return smooth_conv |
|
|
|
|
|
def build_smooth_conv2D(in_channels=1, |
|
out_channels=1, |
|
kernel_size=3, |
|
padding=1): |
|
smooth_conv = torch.nn.Conv2d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
padding=padding) |
|
smooth_conv.weight.data = torch.ones( |
|
(in_channels, out_channels, kernel_size, kernel_size), |
|
dtype=torch.float32) / (kernel_size**2) |
|
smooth_conv.bias.data = torch.zeros(out_channels) |
|
return smooth_conv |
|
|
|
|
|
def get_uncertain_point_coords_on_grid3D(uncertainty_map, num_points, |
|
**kwargs): |
|
""" |
|
Find `num_points` most uncertain points from `uncertainty_map` grid. |
|
Args: |
|
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W, D) that contains uncertainty |
|
values for a set of points on a regular H x W x D grid. |
|
num_points (int): The number of points P to select. |
|
Returns: |
|
point_indices (Tensor): A tensor of shape (N, P) that contains indices from |
|
[0, H x W x D) of the most uncertain points. |
|
point_coords (Tensor): A tensor of shape (N, P, 3) that contains [0, 1] x [0, 1] normalized |
|
coordinates of the most uncertain points from the H x W x D grid. |
|
""" |
|
R, _, D, H, W = uncertainty_map.shape |
|
|
|
|
|
|
|
|
|
num_points = min(D * H * W, num_points) |
|
point_scores, point_indices = torch.topk(uncertainty_map.view( |
|
R, D * H * W), |
|
k=num_points, |
|
dim=1) |
|
point_coords = torch.zeros(R, |
|
num_points, |
|
3, |
|
dtype=torch.float, |
|
device=uncertainty_map.device) |
|
|
|
|
|
|
|
point_coords[:, :, 0] = (point_indices % W).to(torch.float) |
|
point_coords[:, :, 1] = (point_indices % (H * W) // W).to(torch.float) |
|
point_coords[:, :, 2] = (point_indices // (H * W)).to(torch.float) |
|
print(f"resolution {D} x {H} x {W}", point_scores.min(), |
|
point_scores.max()) |
|
return point_indices, point_coords |
|
|
|
|
|
def get_uncertain_point_coords_on_grid3D_faster(uncertainty_map, num_points, |
|
clip_min): |
|
""" |
|
Find `num_points` most uncertain points from `uncertainty_map` grid. |
|
Args: |
|
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W, D) that contains uncertainty |
|
values for a set of points on a regular H x W x D grid. |
|
num_points (int): The number of points P to select. |
|
Returns: |
|
point_indices (Tensor): A tensor of shape (N, P) that contains indices from |
|
[0, H x W x D) of the most uncertain points. |
|
point_coords (Tensor): A tensor of shape (N, P, 3) that contains [0, 1] x [0, 1] normalized |
|
coordinates of the most uncertain points from the H x W x D grid. |
|
""" |
|
R, _, D, H, W = uncertainty_map.shape |
|
|
|
|
|
|
|
|
|
assert R == 1, "batchsize > 1 is not implemented!" |
|
uncertainty_map = uncertainty_map.view(D * H * W) |
|
indices = (uncertainty_map >= clip_min).nonzero().squeeze(1) |
|
num_points = min(num_points, indices.size(0)) |
|
point_scores, point_indices = torch.topk(uncertainty_map[indices], |
|
k=num_points, |
|
dim=0) |
|
point_indices = indices[point_indices].unsqueeze(0) |
|
|
|
point_coords = torch.zeros(R, |
|
num_points, |
|
3, |
|
dtype=torch.float, |
|
device=uncertainty_map.device) |
|
|
|
|
|
|
|
point_coords[:, :, 0] = (point_indices % W).to(torch.float) |
|
point_coords[:, :, 1] = (point_indices % (H * W) // W).to(torch.float) |
|
point_coords[:, :, 2] = (point_indices // (H * W)).to(torch.float) |
|
|
|
return point_indices, point_coords |
|
|
|
|
|
def get_uncertain_point_coords_on_grid2D(uncertainty_map, num_points, |
|
**kwargs): |
|
""" |
|
Find `num_points` most uncertain points from `uncertainty_map` grid. |
|
Args: |
|
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty |
|
values for a set of points on a regular H x W grid. |
|
num_points (int): The number of points P to select. |
|
Returns: |
|
point_indices (Tensor): A tensor of shape (N, P) that contains indices from |
|
[0, H x W) of the most uncertain points. |
|
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized |
|
coordinates of the most uncertain points from the H x W grid. |
|
""" |
|
R, _, H, W = uncertainty_map.shape |
|
|
|
|
|
|
|
num_points = min(H * W, num_points) |
|
point_scores, point_indices = torch.topk(uncertainty_map.view(R, H * W), |
|
k=num_points, |
|
dim=1) |
|
point_coords = torch.zeros(R, |
|
num_points, |
|
2, |
|
dtype=torch.long, |
|
device=uncertainty_map.device) |
|
|
|
|
|
point_coords[:, :, 0] = (point_indices % W).to(torch.long) |
|
point_coords[:, :, 1] = (point_indices // W).to(torch.long) |
|
|
|
return point_indices, point_coords |
|
|
|
|
|
def get_uncertain_point_coords_on_grid2D_faster(uncertainty_map, num_points, |
|
clip_min): |
|
""" |
|
Find `num_points` most uncertain points from `uncertainty_map` grid. |
|
Args: |
|
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty |
|
values for a set of points on a regular H x W grid. |
|
num_points (int): The number of points P to select. |
|
Returns: |
|
point_indices (Tensor): A tensor of shape (N, P) that contains indices from |
|
[0, H x W) of the most uncertain points. |
|
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized |
|
coordinates of the most uncertain points from the H x W grid. |
|
""" |
|
R, _, H, W = uncertainty_map.shape |
|
|
|
|
|
|
|
assert R == 1, "batchsize > 1 is not implemented!" |
|
uncertainty_map = uncertainty_map.view(H * W) |
|
indices = (uncertainty_map >= clip_min).nonzero().squeeze(1) |
|
num_points = min(num_points, indices.size(0)) |
|
point_scores, point_indices = torch.topk(uncertainty_map[indices], |
|
k=num_points, |
|
dim=0) |
|
point_indices = indices[point_indices].unsqueeze(0) |
|
|
|
point_coords = torch.zeros(R, |
|
num_points, |
|
2, |
|
dtype=torch.long, |
|
device=uncertainty_map.device) |
|
|
|
|
|
point_coords[:, :, 0] = (point_indices % W).to(torch.long) |
|
point_coords[:, :, 1] = (point_indices // W).to(torch.long) |
|
|
|
return point_indices, point_coords |
|
|
|
|
|
def calculate_uncertainty(logits, classes=None, balance_value=0.5): |
|
""" |
|
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the |
|
foreground class in `classes`. |
|
Args: |
|
logits (Tensor): A tensor of shape (R, C, ...) or (R, 1, ...) for class-specific or |
|
class-agnostic, where R is the total number of predicted masks in all images and C is |
|
the number of foreground classes. The values are logits. |
|
classes (list): A list of length R that contains either predicted of ground truth class |
|
for eash predicted mask. |
|
Returns: |
|
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with |
|
the most uncertain locations having the highest uncertainty score. |
|
""" |
|
if logits.shape[1] == 1: |
|
gt_class_logits = logits |
|
else: |
|
gt_class_logits = logits[ |
|
torch.arange(logits.shape[0], device=logits.device), |
|
classes].unsqueeze(1) |
|
return -torch.abs(gt_class_logits - balance_value) |
|
|