|
import datetime
|
|
import pytz
|
|
import traceback
|
|
from torchvision.utils import make_grid
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
import numpy as np
|
|
import torch
|
|
import json
|
|
import os
|
|
from tqdm import tqdm
|
|
import cv2
|
|
import imageio
|
|
def get_time_for_log():
|
|
return datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime(
|
|
"%Y%m%d %H:%M:%S")
|
|
|
|
|
|
def get_trace_for_log():
|
|
return str(traceback.format_exc())
|
|
|
|
def make_grid_(imgs, save_file, nrow=10, pad_value=1):
|
|
if isinstance(imgs, list):
|
|
if isinstance(imgs[0], Image.Image):
|
|
imgs = [torch.from_numpy(np.array(img)/255.) for img in imgs]
|
|
elif isinstance(imgs[0], np.ndarray):
|
|
imgs = [torch.from_numpy(img/255.) for img in imgs]
|
|
imgs = torch.stack(imgs, 0).permute(0, 3, 1, 2)
|
|
if isinstance(imgs, np.ndarray):
|
|
imgs = torch.from_numpy(imgs)
|
|
|
|
img_grid = make_grid(imgs, nrow=nrow, padding=2, pad_value=pad_value)
|
|
img_grid = img_grid.permute(1, 2, 0).numpy()
|
|
img_grid = (img_grid * 255).astype(np.uint8)
|
|
img_grid = Image.fromarray(img_grid)
|
|
img_grid.save(save_file)
|
|
|
|
def draw_caption(img, text, pos, size=100, color=(128, 128, 128)):
|
|
draw = ImageDraw.Draw(img)
|
|
|
|
font = ImageFont.load_default()
|
|
font = font.font_variant(size=size)
|
|
draw.text(pos, text, color, font=font)
|
|
return img
|
|
|
|
|
|
def txt2json(txt_file, json_file):
|
|
with open(txt_file, 'r') as f:
|
|
items = f.readlines()
|
|
items = [x.strip() for x in items]
|
|
|
|
with open(json_file, 'w') as f:
|
|
json.dump(items.tolist(), f)
|
|
|
|
def process_thuman_texture():
|
|
path = '/aifs4su/mmcode/lipeng/Thuman2.0'
|
|
cases = os.listdir(path)
|
|
for case in tqdm(cases):
|
|
mtl = os.path.join(path, case, 'material0.mtl')
|
|
with open(mtl, 'r') as f:
|
|
lines = f.read()
|
|
lines = lines.replace('png', 'jpeg')
|
|
with open(mtl, 'w') as f:
|
|
f.write(lines)
|
|
|
|
|
|
|
|
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
|
|
|
|
|
def get_intrinsic_from_fov(fov, H, W, bs=-1):
|
|
focal_length = 0.5 * H / np.tan(0.5 * fov)
|
|
intrinsic = np.identity(3, dtype=np.float32)
|
|
intrinsic[0, 0] = focal_length
|
|
intrinsic[1, 1] = focal_length
|
|
intrinsic[0, 2] = W / 2.0
|
|
intrinsic[1, 2] = H / 2.0
|
|
|
|
if bs > 0:
|
|
intrinsic = intrinsic[None].repeat(bs, axis=0)
|
|
|
|
return torch.from_numpy(intrinsic)
|
|
|
|
def read_data(data_dir, i):
|
|
"""
|
|
Return:
|
|
rgb: (H, W, 3) torch.float32
|
|
depth: (H, W, 1) torch.float32
|
|
mask: (H, W, 1) torch.float32
|
|
c2w: (4, 4) torch.float32
|
|
intrinsic: (3, 3) torch.float32
|
|
"""
|
|
background_color = torch.tensor([0.0, 0.0, 0.0])
|
|
|
|
rgb_name = os.path.join(data_dir, f'render_%04d.webp' % i)
|
|
depth_name = os.path.join(data_dir, f'depth_%04d.exr' % i)
|
|
|
|
img = torch.from_numpy(
|
|
np.asarray(
|
|
Image.fromarray(imageio.v2.imread(rgb_name))
|
|
.convert("RGBA")
|
|
)
|
|
/ 255.0
|
|
).float()
|
|
mask = img[:, :, -1:]
|
|
rgb = img[:, :, :3] * mask + background_color[
|
|
None, None, :
|
|
] * (1 - mask)
|
|
|
|
depth = torch.from_numpy(
|
|
cv2.imread(depth_name, cv2.IMREAD_UNCHANGED)[..., 0, None]
|
|
)
|
|
mask[depth > 100.0] = 0.0
|
|
depth[~(mask > 0.5)] = 0.0
|
|
|
|
meta_path = os.path.join(data_dir, 'meta.json')
|
|
with open(meta_path, 'r') as f:
|
|
meta = json.load(f)
|
|
|
|
c2w = torch.as_tensor(
|
|
meta['locations'][i]["transform_matrix"],
|
|
dtype=torch.float32,
|
|
)
|
|
|
|
H, W = rgb.shape[:2]
|
|
fovy = meta["camera_angle_x"]
|
|
intrinsic = get_intrinsic_from_fov(fovy, H=H, W=W)
|
|
|
|
return rgb, depth, mask, c2w, intrinsic
|
|
|