HuBERT / examples /hubert /simple_kmeans /dump_hubert_feature.py
aliabd
full working demo
d5175d3
raw
history blame contribute delete
4.28 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import os
import sys
import fairseq
import soundfile as sf
import torch
import torch.nn.functional as F
import tqdm
from npy_append_array import NpyAppendArray
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("dump_hubert_feature")
class HubertFeatureReader(object):
def __init__(self, ckpt_path, layer, max_chunk=1600000):
(
model,
cfg,
task,
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
self.model = model[0].eval().cuda()
self.task = task
self.layer = layer
self.max_chunk = max_chunk
logger.info(f"TASK CONFIG:\n{self.task.cfg}")
logger.info(f" max_chunk = {self.max_chunk}")
def read_audio(self, path, ref_len=None):
wav, sr = sf.read(path)
assert sr == self.task.cfg.sample_rate, sr
if wav.ndim == 2:
wav = wav.mean(-1)
assert wav.ndim == 1, wav.ndim
if ref_len is not None and abs(ref_len - len(wav)) > 160:
logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
return wav
def get_feats(self, path, ref_len=None):
x = self.read_audio(path, ref_len)
with torch.no_grad():
x = torch.from_numpy(x).float().cuda()
if self.task.cfg.normalize:
x = F.layer_norm(x, x.shape)
x = x.view(1, -1)
feat = []
for start in range(0, x.size(1), self.max_chunk):
x_chunk = x[:, start: start + self.max_chunk]
feat_chunk, _ = self.model.extract_features(
source=x_chunk,
padding_mask=None,
mask=False,
output_layer=self.layer,
)
feat.append(feat_chunk)
return torch.cat(feat, 1).squeeze(0)
def get_path_iterator(tsv, nshard, rank):
with open(tsv, "r") as f:
root = f.readline().rstrip()
lines = [line.rstrip() for line in f]
tot = len(lines)
shard_size = math.ceil(tot / nshard)
start, end = rank * shard_size, min((rank + 1) * shard_size, tot)
assert start < end, "start={start}, end={end}"
logger.info(
f"rank {rank} of {nshard}, process {end-start} "
f"({start}-{end}) out of {tot}"
)
lines = lines[start:end]
def iterate():
for line in lines:
subpath, nsample = line.split("\t")
yield f"{root}/{subpath}", int(nsample)
return iterate, len(lines)
def dump_feature(
tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk
):
reader = HubertFeatureReader(ckpt_path, layer, max_chunk)
generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
iterator = generator()
feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy"
leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len"
os.makedirs(feat_dir, exist_ok=True)
if os.path.exists(feat_path):
os.remove(feat_path)
feat_f = NpyAppendArray(feat_path)
with open(leng_path, "w") as leng_f:
for path, nsample in tqdm.tqdm(iterator, total=num):
feat = reader.get_feats(path, nsample)
feat_f.append(feat.cpu().numpy())
leng_f.write(f"{len(feat)}\n")
logger.info("finished successfully")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("tsv_dir")
parser.add_argument("split")
parser.add_argument("ckpt_path")
parser.add_argument("layer", type=int)
parser.add_argument("nshard", type=int)
parser.add_argument("rank", type=int)
parser.add_argument("feat_dir")
parser.add_argument("--max_chunk", type=int, default=1600000)
args = parser.parse_args()
logger.info(args)
dump_feature(**vars(args))