GANsNRoses / model.py
aliabd
copied all files from repo
bca104a
import torchvision
import math
import random
import functools
import operator
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Function
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
n_latent = 11
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256,
128: 128,
256: 64,
512: 32,
1024: 16,
}
class LambdaLR():
def __init__(self, n_epochs, offset, decay_start_epoch):
assert ((n_epochs - decay_start_epoch) > 0), "Decay must start before the training session ends!"
self.n_epochs = n_epochs
self.offset = offset
self.decay_start_epoch = decay_start_epoch
def step(self, epoch):
return 1.0 - max(0, epoch + self.offset - self.decay_start_epoch)/(self.n_epochs - self.decay_start_epoch)
class PixelNorm(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * (factor ** 2)
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = (pad0, pad1)
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class Downsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel)
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2
pad1 = p // 2
self.pad = (pad0, pad1)
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
return out
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * (upsample_factor ** 2)
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualConv2d(nn.Module):
def __init__(
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
):
super().__init__()
self.weight = nn.Parameter(
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
)
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
self.stride = stride
self.padding = padding
if bias:
self.bias = nn.Parameter(torch.zeros(out_channel))
else:
self.bias = None
def forward(self, input):
out = F.conv2d(
input,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
)
class EqualLinear(nn.Module):
def __init__(
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias*self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(
input, self.weight * self.scale, bias=bias
)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ScaledLeakyReLU(nn.Module):
def __init__(self, negative_slope=0.2):
super().__init__()
self.negative_slope = negative_slope
def forward(self, input):
out = F.leaky_relu(input, negative_slope=self.negative_slope)
return out * math.sqrt(2)
class ModulatedConv2d(nn.Module):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
style_dim,
use_style=True,
demodulate=True,
upsample=False,
downsample=False,
blur_kernel=[1, 3, 3, 1],
):
super().__init__()
self.eps = 1e-8
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = (len(blur_kernel) - factor) - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
)
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1, 1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
f'upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if self.use_style:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
else:
weight = self.scale * self.weight.expand(batch,-1,-1,-1,-1) * self.modulation
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
)
weight = weight.transpose(1, 2).reshape(
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
)
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class NoiseInjection(nn.Module):
def __init__(self):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1))
def forward(self, image, noise=None):
if noise is None:
batch, _, height, width = image.shape
noise = image.new_empty(batch, 1, height, width).normal_()
return image + self.weight * noise
class ConstantInput(nn.Module):
def __init__(self, style_dim):
super().__init__()
self.input = nn.Parameter(torch.randn(1, style_dim))
def forward(self, input):
batch = input.shape[0]
out = self.input.repeat(batch, n_latent)
return out
class StyledConv(nn.Module):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
style_dim,
use_style=True,
upsample=False,
downsample=False,
blur_kernel=[1, 3, 3, 1],
demodulate=True,
):
super().__init__()
self.use_style = use_style
self.conv = ModulatedConv2d(
in_channel,
out_channel,
kernel_size,
style_dim,
use_style=use_style,
upsample=upsample,
downsample=downsample,
blur_kernel=blur_kernel,
demodulate=demodulate,
)
#if use_style:
# self.noise = NoiseInjection()
#else:
# self.noise = None
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
# self.activate = ScaledLeakyReLU(0.2)
self.activate = FusedLeakyReLU(out_channel)
def forward(self, input, style=None, noise=None):
out = self.conv(input, style)
#if self.use_style:
# out = self.noise(out, noise=noise)
# out = out + self.bias
out = self.activate(out)
return out
class StyledResBlock(nn.Module):
def __init__(self, in_channel, style_dim, blur_kernel=[1, 3, 3, 1], demodulate=True):
super().__init__()
self.conv1 = StyledConv(in_channel, in_channel, 3, style_dim, upsample=False, blur_kernel=blur_kernel, demodulate=demodulate)
self.conv2 = StyledConv(in_channel, in_channel, 3, style_dim, upsample=False, blur_kernel=blur_kernel, demodulate=demodulate)
def forward(self, input, style):
out = self.conv1(input, style)
out = self.conv2(out, style)
out = (out + input) / math.sqrt(2)
return out
class ToRGB(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input, style, skip=None):
out = self.conv(input, style)
out = out + self.bias
if skip is not None:
skip = self.upsample(skip)
out = out + skip
return out
class Generator(nn.Module):
def __init__(
self,
size,
num_down,
latent_dim,
n_mlp,
n_res,
channel_multiplier=1,
blur_kernel=[1, 3, 3, 1],
lr_mlp=0.01,
):
super().__init__()
self.size = size
style_dim = 512
mapping = [EqualLinear(latent_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu')]
for i in range(n_mlp-1):
mapping.append(EqualLinear(style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'))
self.mapping = nn.Sequential(*mapping)
self.encoder = Encoder(size, latent_dim, num_down, n_res, channel_multiplier)
self.log_size = int(math.log(size, 2)) #7
in_log_size = self.log_size - num_down #7-2 or 7-3
in_size = 2 ** in_log_size
in_channel = channels[in_size]
self.adain_bottleneck = nn.ModuleList()
for i in range(n_res):
self.adain_bottleneck.append(StyledResBlock(in_channel, style_dim))
self.conv1 = StyledConv(in_channel, in_channel, 3, style_dim, blur_kernel=blur_kernel)
self.to_rgb1 = ToRGB(in_channel, style_dim, upsample=False)
self.num_layers = (self.log_size - in_log_size) * 2 + 1 #7
self.convs = nn.ModuleList()
self.upsamples = nn.ModuleList()
self.to_rgbs = nn.ModuleList()
#self.noises = nn.Module()
#for layer_idx in range(self.num_layers):
# res = (layer_idx + (in_log_size*2+1)) // 2 #2,3,3,5 ... -> 4,5,5,6 ...
# shape = [1, 1, 2 ** res, 2 ** res]
# self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
for i in range(in_log_size+1, self.log_size + 1):
out_channel = channels[2 ** i]
self.convs.append(
StyledConv(
in_channel,
out_channel,
3,
style_dim,
upsample=True,
blur_kernel=blur_kernel,
)
)
self.convs.append(
StyledConv(
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
)
)
self.to_rgbs.append(ToRGB(out_channel, style_dim))
in_channel = out_channel
def style_encode(self, input):
return self.encoder(input)[1]
def encode(self, input):
return self.encoder(input)
def forward(self, input, z=None):
content, style = self.encode(input)
if z is None:
out = self.decode(content, style)
else:
out = self.decode(content, z)
return out, content, style
def decode(self, input, styles, use_mapping=True):
if use_mapping:
styles = self.mapping(styles)
#styles = styles.repeat(1, n_latent).view(styles.size(0), n_latent, -1)
out = input
i = 0
for conv in self.adain_bottleneck:
out = conv(out, styles)
i += 1
out = self.conv1(out, styles, noise=None)
skip = self.to_rgb1(out, styles)
i += 2
for conv1, conv2, to_rgb in zip(
self.convs[::2], self.convs[1::2], self.to_rgbs
):
out = conv1(out, styles, noise=None)
out = conv2(out, styles, noise=None)
skip = to_rgb(out, styles, skip)
i += 3
image = skip
return image
class ConvLayer(nn.Sequential):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
downsample=False,
blur_kernel=[1, 3, 3, 1],
bias=True,
activate=True,
):
layers = []
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
stride = 2
self.padding = 0
else:
stride = 1
self.padding = kernel_size // 2
layers.append(
EqualConv2d(
in_channel,
out_channel,
kernel_size,
padding=self.padding,
stride=stride,
bias=bias and not activate,
)
)
if activate:
if bias:
layers.append(FusedLeakyReLU(out_channel))
else:
layers.append(ScaledLeakyReLU(0.2))
super().__init__(*layers)
class InResBlock(nn.Module):
def __init__(self, in_channel, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.conv1 = StyledConv(in_channel, in_channel, 3, None, blur_kernel=blur_kernel, demodulate=True, use_style=False)
self.conv2 = StyledConv(in_channel, in_channel, 3, None, blur_kernel=blur_kernel, demodulate=True, use_style=False)
def forward(self, input):
out = self.conv1(input, None)
out = self.conv2(out, None)
out = (out + input) / math.sqrt(2)
return out
class ResBlock(nn.Module):
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], downsample=True):
super().__init__()
self.conv1 = ConvLayer(in_channel, in_channel, 3)
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=downsample)
if downsample or in_channel != out_channel:
self.skip = ConvLayer(
in_channel, out_channel, 1, downsample=downsample, activate=False, bias=False
)
else:
self.skip = None
def forward(self, input):
out = self.conv1(input)
out = self.conv2(out)
if self.skip is None:
skip = input
else:
skip = self.skip(input)
out = (out + skip) / math.sqrt(2)
return out
class Discriminator(nn.Module):
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.size = size
l_branch = self.make_net_(32)
l_branch += [ConvLayer(channels[32], 1, 1, activate=False)]
self.l_branch = nn.Sequential(*l_branch)
g_branch = self.make_net_(8)
self.g_branch = nn.Sequential(*g_branch)
self.g_adv = ConvLayer(channels[8], 1, 1, activate=False)
self.g_std = nn.Sequential(ConvLayer(channels[8], channels[4], 3, downsample=True),
nn.Flatten(),
EqualLinear(channels[4] * 4 * 4, 128, activation='fused_lrelu'),
)
self.g_final = EqualLinear(128, 1, activation=False)
def make_net_(self, out_size):
size = self.size
convs = [ConvLayer(3, channels[size], 1)]
log_size = int(math.log(size, 2))
out_log_size = int(math.log(out_size, 2))
in_channel = channels[size]
for i in range(log_size, out_log_size, -1):
out_channel = channels[2 ** (i - 1)]
convs.append(ResBlock(in_channel, out_channel))
in_channel = out_channel
return convs
def forward(self, x):
l_adv = self.l_branch(x)
g_act = self.g_branch(x)
g_adv = self.g_adv(g_act)
output = self.g_std(g_act)
g_stddev = torch.sqrt(output.var(0, keepdim=True, unbiased=False) + 1e-8).repeat(x.size(0),1)
g_std = self.g_final(g_stddev)
return [l_adv, g_adv, g_std]
class Encoder(nn.Module):
def __init__(self, size, latent_dim, num_down, n_res, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
super().__init__()
stem = [ConvLayer(3, channels[size], 1)]
log_size = int(math.log(size, 2))
in_channel = channels[size]
for i in range(log_size, log_size-num_down, -1):
out_channel = channels[2 ** (i - 1)]
stem.append(ResBlock(in_channel, out_channel, downsample=True))
in_channel = out_channel
stem += [ResBlock(in_channel, in_channel, downsample=False) for i in range(n_res)]
self.stem = nn.Sequential(*stem)
self.content = nn.Sequential(
ConvLayer(in_channel, in_channel, 1),
ConvLayer(in_channel, in_channel, 1)
)
style = []
for i in range(log_size-num_down, 2, -1):
out_channel = channels[2 ** (i - 1)]
style.append(ConvLayer(in_channel, out_channel, 3, downsample=True))
in_channel = out_channel
style += [
nn.Flatten(),
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
EqualLinear(channels[4], latent_dim),
]
self.style = nn.Sequential(*style)
def forward(self, input):
act = self.stem(input)
content = self.content(act)
style = self.style(act)
return content, style
class StyleEncoder(nn.Module):
def __init__(self, size, style_dim, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
super().__init__()
convs = [ConvLayer(3, channels[size], 1)]
log_size = int(math.log(size, 2))
in_channel = channels[size]
num_down = 6
for i in range(log_size, log_size-num_down, -1):
w = 2 ** (i - 1)
out_channel = channels[w]
convs.append(ConvLayer(in_channel, out_channel, 3, downsample=True))
in_channel = out_channel
convs += [
nn.Flatten(),
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), EqualLinear(channels[4], style_dim),
]
self.convs = nn.Sequential(*convs)
def forward(self, input):
style = self.convs(input)
return style.view(input.size(0), -1)
class LatDiscriminator(nn.Module):
def __init__(self, style_dim):
super().__init__()
fc = [EqualLinear(style_dim, 256, activation='fused_lrelu')]
for i in range(3):
fc += [EqualLinear(256, 256, activation='fused_lrelu')]
fc += [FCMinibatchStd(256, 256)]
fc += [EqualLinear(256, 1)]
self.fc = nn.Sequential(*fc)
def forward(self, input):
return [self.fc(input), ]
class FCMinibatchStd(nn.Module):
def __init__(self, in_channel, out_channel):
super().__init__()
self.fc = EqualLinear(in_channel+1, out_channel, activation='fused_lrelu')
def forward(self, out):
stddev = torch.sqrt(out.var(0, unbiased=False) + 1e-8).mean().view(1,1).repeat(out.size(0), 1)
out = torch.cat([out, stddev], 1)
out = self.fc(out)
return out