Biome / app.py
pyesonekyaw's picture
Update app.py
b9cfd03 verified
import collections
import heapq
import json
import os
import logging
import faiss
import requests
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from open_clip import create_model, get_tokenizer
from torchvision import transforms
from PIL import Image
import io
from pathlib import Path
from huggingface_hub import hf_hub_download
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger()
hf_token = os.getenv("HF_TOKEN")
model_str = "hf-hub:imageomics/bioclip"
tokenizer_str = "ViT-B-16"
txt_emb_npy = hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='txt_emb_species.npy', repo_type="dataset")
txt_names_json = "txt_emb_species.json"
min_prob = 1e-9
k = 5
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
preprocess_img = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize((224, 224), antialias=True),
transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
]
)
MIN_PROB = 1e-9
TOP_K_PREDICTIONS = 5
TOP_K_CANDIDATES = 250
TOP_N_SIMILAR = 22
SIMILARITY_BOOST = 0.2
VOTE_THRESHOLD = 3
SIMILARITY_THRESHOLD = 0.99
# Add paths for RAG
PHOTO_LOOKUP_PATH = f"./photo_lookup.json"
SPECIES_LOOKUP_PATH = f"./species_lookup.json"
theme = gr.themes.Base(
primary_hue=gr.themes.colors.teal,
secondary_hue=gr.themes.colors.blue,
neutral_hue=gr.themes.colors.gray,
text_size=gr.themes.sizes.text_lg,
).set(
button_primary_background_fill="#114A56",
button_primary_background_fill_hover="#114A56",
block_title_text_weight="600",
block_label_text_weight="600",
block_label_text_size="*text_md",
)
EXAMPLES_DIR = Path("examples")
example_images = sorted(str(p) for p in EXAMPLES_DIR.glob("*.jpg"))
def indexed(lst, indices):
return [lst[i] for i in indices]
def format_name(taxon, common):
taxon = " ".join(taxon)
if not common:
return taxon
return f"{taxon} ({common})"
def combine_duplicate_predictions(predictions):
"""Combine predictions where one name is contained within another."""
combined = {}
used = set()
# Sort by length of name (longer names first) and probability
items = sorted(predictions.items(), key=lambda x: (-len(x[0]), -x[1]))
for name1, prob1 in items:
if name1 in used:
continue
total_prob = prob1
used.add(name1)
# Check remaining predictions
for name2, prob2 in predictions.items():
if name2 in used:
continue
# Convert to lowercase for comparison
name1_lower = name1.lower()
name2_lower = name2.lower()
# Check if one name contains the other
if name1_lower in name2_lower or name2_lower in name1_lower:
total_prob += prob2
used.add(name2)
combined[name1] = total_prob
# Normalize probabilities
total = sum(combined.values())
return {k: v/total for k, v in combined.items()}
@torch.no_grad()
def open_domain_classification(img, rank: int, return_all=False):
"""
Predicts from the entire tree of life using RAG approach.
"""
logger.info(f"Starting open domain classification for rank: {rank}")
img = preprocess_img(img).to(device)
img_features = model.encode_image(img.unsqueeze(0))
img_features = F.normalize(img_features, dim=-1)
# Get zero-shot predictions
logits = (model.logit_scale.exp() * img_features @ txt_emb).squeeze()
probs = F.softmax(logits, dim=0)
# Get similar images votes and metadata
species_votes, similar_images = get_similar_images_metadata(img_features, faiss_index, id_mapping, name_mapping)
if rank + 1 == len(ranks):
# Species level prediction
topk = probs.topk(TOP_K_CANDIDATES)
predictions = {
format_name(*txt_names[i]): prob.item()
for i, prob in zip(topk.indices, topk.values)
}
# Augment predictions with votes
augmented_predictions = predictions.copy()
for pred_name in predictions:
pred_name_lower = pred_name.lower()
for voted_species, vote_count in species_votes.items():
if voted_species in pred_name_lower or pred_name_lower in voted_species:
augmented_predictions[pred_name] += SIMILARITY_BOOST * vote_count
elif vote_count >= VOTE_THRESHOLD:
augmented_predictions[voted_species] = vote_count * SIMILARITY_BOOST
# Sort predictions
sorted_predictions = dict(sorted(
augmented_predictions.items(),
key=lambda x: x[1],
reverse=True
)[:k])
# Normalize and combine duplicates
total = sum(sorted_predictions.values())
sorted_predictions = {k: v/total for k, v in sorted_predictions.items()}
sorted_predictions = combine_duplicate_predictions(sorted_predictions)
logger.info(f"Top K predictions after combining duplicates: {sorted_predictions}")
return sorted_predictions, similar_images
# Higher rank prediction
output = collections.defaultdict(float)
for i in torch.nonzero(probs > MIN_PROB).squeeze():
output[" ".join(txt_names[i][0][: rank + 1])] += probs[i]
# Incorporate votes for higher ranks
for species, vote_count in species_votes.items():
try:
# Find matching taxonomy in txt_names
for taxonomy, _ in txt_names:
if species in " ".join(taxonomy).lower():
higher_rank = " ".join(taxonomy[: rank + 1])
output[higher_rank] += SIMILARITY_BOOST * vote_count
break
except Exception as e:
logger.error(f"Error processing vote for species {species}: {e}")
# Get top-k predictions and normalize
topk_names = heapq.nlargest(k, output, key=output.get)
prediction_dict = {name: output[name] for name in topk_names}
# Normalize probabilities to sum to 1
total = sum(prediction_dict.values())
prediction_dict = {k: v/total for k, v in prediction_dict.items()}
prediction_dict = combine_duplicate_predictions(prediction_dict)
logger.info(f"Prediction dictionary after combining duplicates: {prediction_dict}")
return prediction_dict, similar_images
def change_output(choice):
return gr.Label(num_top_classes=k, label=ranks[choice], show_label=True, value=None)
def get_cache_paths(name="demo"):
"""Get paths for cached FAISS index and ID mapping."""
return {
'index': hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='cache/faiss_cache_demo.index', repo_type="dataset"),
'mapping': hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='cache/faiss_cache_demo_mapping.json', repo_type="dataset")
}
def build_name_mapping(txt_names):
"""Build mapping between scientific names and common names."""
name_mapping = {}
for taxonomy, common_name in txt_names:
if not common_name:
continue
if len(taxonomy) >= 2:
scientific_name = f"{taxonomy[-2]} {taxonomy[-1]}".lower()
common_name = common_name.lower()
name_mapping[scientific_name] = (scientific_name, common_name)
name_mapping[common_name] = (scientific_name, common_name)
return name_mapping
def load_faiss_index():
"""Load FAISS index from cache."""
cache_paths = get_cache_paths()
logger.info("Loading FAISS index from cache...")
index = faiss.read_index(cache_paths['index'])
with open(cache_paths['mapping'], 'r') as f:
id_mapping = json.load(f)
return index, id_mapping
def get_similar_images_metadata(img_embedding, faiss_index, id_mapping, name_mapping):
"""Get metadata for similar images using FAISS search."""
img_embedding_np = img_embedding.cpu().numpy()
if img_embedding_np.ndim == 1:
img_embedding_np = img_embedding_np.reshape(1, -1)
# Search for more images than needed to account for filtered matches
distances, indices = faiss_index.search(img_embedding_np, TOP_N_SIMILAR * 2)
# Filter out near-exact matches
valid_indices = []
valid_distances = []
valid_count = 0
for dist, idx in zip(distances[0], indices[0]):
# For inner product similarity, the distance is already the similarity
similarity = dist
if similarity > SIMILARITY_THRESHOLD:
continue
valid_indices.append(idx)
valid_distances.append(similarity)
valid_count += 1
if valid_count >= TOP_N_SIMILAR:
break
species_votes = {}
similar_images = []
for idx, similarity in zip(valid_indices[:5], valid_distances[:5]): # Only process top 5 for display
similar_img_id = id_mapping[idx]
try:
species_names = id_to_species_info.get(similar_img_id)
species_names = [name for name in species_names if name]
processed_names = set()
for species in species_names:
if not species:
continue
name_tuple = name_mapping.get(species)
if name_tuple:
processed_names.add(name_tuple[0])
else:
processed_names.add(species)
for species in processed_names:
species_votes[species] = species_votes.get(species, 0) + 1
# Store similar image info if the image file exists
# if img_path and os.path.exists(img_path):
similar_images.append({
'id': similar_img_id,
'species': next(iter(processed_names)) if processed_names else 'Unknown',
'common_name': species_names[-1],
'similarity': similarity # Add similarity score
})
except Exception as e:
logger.error(f"Error processing JSON for image {similar_img_id}: {e}")
continue
return species_votes, similar_images
if __name__ == "__main__":
logger.info("Starting.")
model = create_model(model_str, output_dict=True, require_pretrained=True)
model = model.to(device)
logger.info("Created model.")
model = torch.compile(model)
logger.info("Compiled model.")
tokenizer = get_tokenizer(tokenizer_str)
id_to_photo_url = json.load(open(PHOTO_LOOKUP_PATH))
id_to_species_info = json.load(open(SPECIES_LOOKUP_PATH))
logger.info(f"Loaded {len(id_to_photo_url)} photo mappings")
logger.info(f"Loaded {len(id_to_species_info)} species mappings")
# Load text embeddings and build name mapping
txt_emb = torch.from_numpy(np.load(txt_emb_npy, mmap_mode="r")).to(device)
with open(txt_names_json) as fd:
txt_names = json.load(fd)
# Build name mapping
name_mapping = build_name_mapping(txt_names)
# Build or load FAISS index with test IDs
faiss_index, id_mapping = load_faiss_index()
# Define process_output function before using it
def process_output(img, rank):
predictions, similar_imgs = open_domain_classification(img, rank)
logger.info(f"Number of similar images found: {len(similar_imgs)}")
images = []
labels = []
for img_info in similar_imgs:
img_id = img_info['id']
img_url = id_to_photo_url.get(img_id)
img_url = img_url.replace("square", "small")
logger.info(f"Processing image URL: {img_url}")
try:
# Try fetching from URL first
response = requests.get(img_url)
if response.status_code == 200:
try:
img = Image.open(io.BytesIO(response.content))
images.append(img)
except Exception as e:
logger.info(f"Failed to load image from URL: {e}")
images.append(None)
else:
logger.info(f"Failed to fetch image from URL: {response}")
images.append(None)
# Add label regardless of image load success
label = f"**{img_info['species']}**"
if img_info['common_name']:
label += f" ({img_info['common_name']})"
label += f"\nSimilarity: {img_info['similarity']:.3f}"
label += f"\n[View on iNaturalist](https://www.inaturalist.org/observations/{img_id})"
labels.append(label)
except Exception as e:
logger.error(f"Error processing image {img_id}: {e}")
images.append(None)
labels.append("")
# Pad arrays if needed
images += [None] * (5 - len(images))
labels += [""] * (5 - len(labels))
logger.info(f"Final number of images: {len(images)}")
logger.info(f"Final number of labels: {len(labels)}")
return [predictions] + images + labels
with gr.Blocks(theme=theme) as app:
# Add header
with gr.Row(variant="panel"):
with gr.Column(scale=1):
gr.Image("image.jpg", elem_id="logo-img",
show_label=False )
with gr.Column(scale=30):
gr.Markdown("""Biome is a vision foundation model-powered tool customized to identify Singapore's local biodiversity.
<br/> <br/>
**Developed by**: Pye Sone Kyaw - AI Engineer @ Multimodal AI Team - AI Practice - GovTech SG
<br/> <br/>
Under the hood, Biome is using [BioCLIP](https://github.com/Imageomics/BioCLIP) augmented with multimodal search and retrieval to enhance its Singapore-specific biodiversity classification capabilities.
<br/> <br/>
Biome work best when the organism is clearly visible and takes up a substantial part of the image.
""")
with gr.Row(variant="panel", elem_id="images_panel"):
img_input = gr.Image(
height=400,
sources=["upload"],
type="pil"
)
with gr.Row():
with gr.Column():
with gr.Row():
gr.Examples(
examples=example_images,
inputs=img_input,
label="Example Images"
)
rank_dropdown = gr.Dropdown(
label="Taxonomic Rank",
info="Which taxonomic rank to predict. Fine-grained ranks (genus, species) are more challenging.",
choices=ranks,
value="Species",
type="index",
)
open_domain_btn = gr.Button("Submit", variant="primary")
with gr.Column():
open_domain_output = gr.Label(
num_top_classes=k,
label="Prediction",
show_label=True,
value=None,
)
# New section for similar images
with gr.Row(variant="panel"):
with gr.Column():
gr.Markdown("### Most Similar Images from Database")
with gr.Row():
similar_images = [
gr.Image(label="Similar Image 1", height=200, show_label=True),
gr.Image(label="Similar Image 2", height=200, show_label=True),
gr.Image(label="Similar Image 3", height=200, show_label=True),
gr.Image(label="Similar Image 4", height=200, show_label=True),
gr.Image(label="Similar Image 5", height=200, show_label=True),
]
with gr.Row():
similar_labels = [
gr.Markdown("Species 1"),
gr.Markdown("Species 2"),
gr.Markdown("Species 3"),
gr.Markdown("Species 4"),
gr.Markdown("Species 5"),
]
rank_dropdown.change(
fn=change_output,
inputs=rank_dropdown,
outputs=[open_domain_output]
)
open_domain_btn.click(
fn=process_output,
inputs=[img_input, rank_dropdown],
outputs=[open_domain_output] + similar_images + similar_labels,
)
with gr.Row(variant="panel"):
gr.Markdown("""
**Disclaimer**: This is a proof-of-concept demo for non-commercial purposes. No data is stored or used for any form of training, and all data used for retrieval are from [iNaturalist](https://inaturalist.org/).
The adage of garbage in, garbage out applies here - uploading images not biodiversity-related will yield unpredictable results.
""")
app.queue(max_size=20)
app.launch(share=False, enable_monitoring=False, allowed_paths=["/app/"])