Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # imports | |
| from smolagents import ( | |
| CodeAgent, | |
| DuckDuckGoSearchTool, | |
| TransformersModel, | |
| #InferenceClientModel, | |
| #LogLevel, | |
| ) | |
| import re | |
| def answer_only(text: str) -> str: | |
| """Keep the minimal exact answer; strip markdown/explanations/punctuation.""" | |
| if text is None: | |
| return "" | |
| s = str(text).strip() | |
| # If there is a single integer in the output, return just that integer. | |
| m = re.findall(r"-?\d+", s) | |
| if len(m) == 1: | |
| return m[0] | |
| # If output is wrapped in markdown or quotes, strip them. | |
| s = s.strip("`").strip('"').strip("'") | |
| # Remove markdown like **bold** or *italics* | |
| s = re.sub(r"\*\*(.*?)\*\*", r"\1", s) | |
| s = re.sub(r"\*(.*?)\*", r"\1", s) | |
| # Trim trailing period if answer looks like a number or a simple token. | |
| if s.endswith(".") and re.fullmatch(r"[A-Za-z0-9\- ]+\.", s): | |
| s = s[:-1] | |
| return s.strip() | |
| def build_model(): | |
| # hf_token = os.getenv("HF_TOKEN") | |
| # if not hf_token: | |
| # raise RuntimeError("HF_TOKEN is not set (Space → Settings → Variables and secrets).") | |
| # # Try a prioritized list of chat-capable models on the serverless chat router | |
| # serverless_candidates = [ | |
| # "Qwen/Qwen2.5-7B-Instruct-1M", | |
| # "mistralai/Mistral-7B-Instruct-v0.3", | |
| # "HuggingFaceH4/zephyr-7b-beta", | |
| # ] | |
| # last_err = None | |
| # for mid in serverless_candidates: | |
| # try: | |
| # return InferenceClientModel( | |
| # model_id=mid, | |
| # token=hf_token, # let provider auto-select, don't force provider= | |
| # timeout=120, | |
| # ) | |
| # except Exception as e: | |
| # print(f"[warn] Serverless model '{mid}' failed: {e!r}") | |
| # last_err = e | |
| # Final fallback: local transformers (CPU; slower, but never hits the chat router) | |
| try: | |
| return TransformersModel( | |
| model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct", # or "Qwen/Qwen2.5-0.5B-Instruct" | |
| max_new_tokens=220, | |
| temperature=0.2, | |
| ) | |
| except Exception as e: | |
| raise RuntimeError(f"All model inits failed. Last serverless error: {last_err!r}; " | |
| f"Transformers fallback error: {e!r}") | |
| class BasicAgent: | |
| def __init__(self): | |
| self.search = DuckDuckGoSearchTool() | |
| # hf_token = os.getenv("HF_TOKEN") | |
| # if not hf_token: | |
| # raise RuntimeError("HF_TOKEN is not set (Space → Settings → Variables and secrets).") | |
| # Use a chat-capable model; let provider auto-route | |
| self.model = build_model() | |
| # ⬇️ Set verbosity here (0=ERROR, 1=INFO, 2=DEBUG). Works across versions. | |
| self.agent = CodeAgent( | |
| tools=[self.search], | |
| model=self.model, | |
| max_steps=3, | |
| verbosity_level=1 | |
| ) | |
| # Health check WITHOUT verbosity_level in run() | |
| _ = self.agent.run("Reply with the single word: OK") | |
| def __call__(self, item: dict) -> str: | |
| q = (item.get("question") or "").strip() | |
| prompt = ( | |
| "Answer with the shortest exact phrase/number only. " | |
| "No explanations.\n\n" | |
| f"Question: {q}\nAnswer:" | |
| ) | |
| raw = self.agent.run(prompt) | |
| return answer_only(raw) # exact-match friendly | |
| def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username= f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = (item.get("question") or "").strip() | |
| if not task_id or not question_text: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| # ✅ pass the whole item so the agent can use task_id (e.g., GET /files/{task_id}) | |
| submitted_answer_raw = agent(item) | |
| # ✅ keep answers exact-match friendly (only if you added answer_only()) | |
| submitted_answer = answer_only(submitted_answer_raw) if callable(globals().get("answer_only")) else submitted_answer_raw | |
| answers_payload.append({ | |
| "task_id": task_id, | |
| "submitted_answer": submitted_answer | |
| }) | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": submitted_answer | |
| }) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": f"AGENT ERROR: {e}" | |
| }) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| login_btn = gr.LoginButton() # capture the profile object | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| inputs=[login_btn], # ✅ pass the OAuth profile | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) | |