Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from gradio_litmodel3d import LitModel3D | |
| import os | |
| import shutil | |
| import random | |
| import uuid | |
| from datetime import datetime | |
| from diffusers import DiffusionPipeline | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| import imageio | |
| from easydict import EasyDict as edict | |
| from PIL import Image | |
| from trellis.pipelines import TrellisImageTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
| # Constants | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| # Create permanent storage directory for Flux generated images | |
| SAVE_DIR = "saved_images" | |
| if not os.path.exists(SAVE_DIR): | |
| os.makedirs(SAVE_DIR, exist_ok=True) | |
| def start_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| shutil.rmtree(user_dir) | |
| def preprocess_image(image: Image.Image) -> Image.Image: | |
| processed_image = trellis_pipeline.preprocess_image(image) | |
| return processed_image | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict]: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
| ) | |
| return gs, mesh | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| def generate_flux_image( | |
| prompt: str, | |
| seed: int, | |
| randomize_seed: bool, | |
| width: int, | |
| height: int, | |
| guidance_scale: float, | |
| num_inference_steps: int, | |
| lora_scale: float, | |
| progress: gr.Progress = gr.Progress(track_tqdm=True), | |
| ) -> Image.Image: | |
| """Generate image using Flux pipeline""" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| image = flux_pipeline( | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| ).images[0] | |
| # Save the generated image | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| unique_id = str(uuid.uuid4())[:8] | |
| filename = f"{timestamp}_{unique_id}.png" | |
| filepath = os.path.join(SAVE_DIR, filename) | |
| image.save(filepath) | |
| return image | |
| def image_to_3d( | |
| image: Image.Image, | |
| seed: int, | |
| ss_guidance_strength: float, | |
| ss_sampling_steps: int, | |
| slat_guidance_strength: float, | |
| slat_sampling_steps: int, | |
| req: gr.Request, | |
| ) -> Tuple[dict, str]: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| outputs = trellis_pipeline.run( | |
| image, | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| ) | |
| video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
| video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| video_path = os.path.join(user_dir, 'sample.mp4') | |
| imageio.mimsave(video_path, video, fps=15) | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
| torch.cuda.empty_cache() | |
| return state, video_path | |
| def extract_glb( | |
| state: dict, | |
| mesh_simplify: float, | |
| texture_size: int, | |
| req: gr.Request, | |
| ) -> Tuple[str, str]: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| gs, mesh = unpack_state(state) | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, 'sample.glb') | |
| glb.export(glb_path) | |
| torch.cuda.empty_cache() | |
| return glb_path, glb_path | |
| def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| gs, _ = unpack_state(state) | |
| gaussian_path = os.path.join(user_dir, 'sample.ply') | |
| gs.save_ply(gaussian_path) | |
| torch.cuda.empty_cache() | |
| return gaussian_path, gaussian_path | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown(""" | |
| ## Game Asset Generation to 3D with FLUX and TRELLIS | |
| * Enter a prompt to generate a game asset image, then convert it to 3D | |
| * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| # Flux image generation inputs | |
| prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description") | |
| with gr.Accordion("Generation Settings", open=False): | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider(256, 1024, label="Width", value=768, step=32) | |
| height = gr.Slider(256, 1024, label="Height", value=768, step=32) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1) | |
| num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1) | |
| lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1) | |
| with gr.Accordion("3D Generation Settings", open=False): | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| gr.Markdown("Stage 2: Structured Latent Generation") | |
| with gr.Row(): | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Accordion("GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| with gr.Row(): | |
| extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
| extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
| with gr.Column(): | |
| generated_image = gr.Image(label="Generated Asset", type="pil") | |
| video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True) | |
| model_output = LitModel3D(label="Extracted GLB/Gaussian") | |
| with gr.Row(): | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
| output_buf = gr.State() | |
| # Event handlers | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| generate_btn.click( | |
| generate_flux_image, | |
| inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale], | |
| outputs=[generated_image], | |
| ).then( | |
| image_to_3d, | |
| inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
| outputs=[output_buf, video_output], | |
| ).then( | |
| lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
| outputs=[extract_glb_btn, extract_gs_btn], | |
| ) | |
| extract_glb_btn.click( | |
| extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, download_glb], | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_glb], | |
| ) | |
| extract_gs_btn.click( | |
| extract_gaussian, | |
| inputs=[output_buf], | |
| outputs=[model_output, download_gs], | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_gs], | |
| ) | |
| model_output.clear( | |
| lambda: gr.Button(interactive=False), | |
| outputs=[download_glb], | |
| ) | |
| # Initialize both pipelines | |
| if __name__ == "__main__": | |
| from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig | |
| from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF | |
| # Initialize Flux pipeline | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
| dtype = torch.bfloat16 | |
| file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors" | |
| single_file_base_model = "camenduru/FLUX.1-dev-diffusers" | |
| quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) | |
| text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token) | |
| quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) | |
| transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token) | |
| flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token) | |
| # Initialize Trellis pipeline | |
| trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
| trellis_pipeline.cuda() | |
| try: | |
| trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) | |
| except: | |
| pass | |
| demo.launch() |