Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import gradio as gr | |
housing = pd.read_csv("housing.csv") | |
housing.head() | |
def pred(input1, input2, input3, input4, input5, input6, input7, input8): | |
## 1. split data to get train and test set | |
from sklearn.model_selection import train_test_split | |
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10) | |
## 2. clean the missing values | |
train_set_clean = train_set.dropna(subset=["total_bedrooms"]) | |
train_set_clean | |
## 2. derive training features and training labels | |
train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y | |
train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set | |
## 4. scale the numeric features in training set | |
from sklearn.preprocessing import MinMaxScaler | |
scaler = MinMaxScaler() ## define the transformer | |
scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset | |
train_features_normalized = scaler.transform(train_features) | |
train_features_normalized | |
from sklearn.linear_model import LinearRegression ## import the LinearRegression Function | |
lin_reg = LinearRegression() ## Initialize the class | |
lin_reg.fit(train_features_normalized, train_labels) | |
#testing array | |
testing = np.array([[1,1,1,1,1,1,1,1]]) | |
normalized_testing = scaler.transform(testing) | |
training_predictions = lin_reg.predict(normalized_testing) | |
return training_predictions | |
input_module1 = gr.inputs.Textbox(label = "Feature 1: ") | |
input_module2 = gr.inputs.Textbox(label = "Feature 2: ") | |
input_module3 = gr.inputs.Textbox(label = "Feature 3: ") | |
input_module4 = gr.inputs.Textbox(label = "Feature 4: ") | |
input_module5 = gr.inputs.Textbox(label = "Feature 5: ") | |
input_module6 = gr.inputs.Textbox(label = "Feature 6: ") | |
input_module7 = gr.inputs.Textbox(label = "Feature 7: ") | |
input_module8 = gr.inputs.Textbox(label = "Feature 8: ") | |
output_module = gr.outputs.Textbox(label = "Predicted housing price: ") | |
gr.Interface(fn=pred, | |
inputs=[input_module1,input_module2,input_module3,input_module4,input_module5,input_module6,input_module7,input_module8], | |
outputs=output_module).launch() |