glin2 commited on
Commit
a942870
1 Parent(s): c960c4f

creating new file

Browse files
Files changed (1) hide show
  1. housing_pred.py +54 -0
housing_pred.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import gradio as gr
4
+
5
+ housing = pd.read_csv("housing.csv")
6
+ housing.head()
7
+
8
+ def pred(input1, input2, input3, input4, input5, input6, input7, input8):
9
+ ## 1. split data to get train and test set
10
+ from sklearn.model_selection import train_test_split
11
+ train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
12
+
13
+ ## 2. clean the missing values
14
+ train_set_clean = train_set.dropna(subset=["total_bedrooms"])
15
+ train_set_clean
16
+
17
+ ## 2. derive training features and training labels
18
+ train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
19
+ train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
20
+
21
+ ## 4. scale the numeric features in training set
22
+ from sklearn.preprocessing import MinMaxScaler
23
+ scaler = MinMaxScaler() ## define the transformer
24
+ scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
25
+
26
+ train_features_normalized = scaler.transform(train_features)
27
+ train_features_normalized
28
+
29
+ from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
30
+ lin_reg = LinearRegression() ## Initialize the class
31
+ lin_reg.fit(train_features_normalized, train_labels)
32
+
33
+ #testing array
34
+ testing = np.array([[1,1,1,1,1,1,1,1]])
35
+ normalized_testing = scaler.transform(testing)
36
+
37
+ training_predictions = lin_reg.predict(normalized_testing)
38
+
39
+ return training_predictions
40
+
41
+ input_module1 = gr.inputs.Textbox(label = "Feature 1: ")
42
+ input_module2 = gr.inputs.Textbox(label = "Feature 2: ")
43
+ input_module3 = gr.inputs.Textbox(label = "Feature 3: ")
44
+ input_module4 = gr.inputs.Textbox(label = "Feature 4: ")
45
+ input_module5 = gr.inputs.Textbox(label = "Feature 5: ")
46
+ input_module6 = gr.inputs.Textbox(label = "Feature 6: ")
47
+ input_module7 = gr.inputs.Textbox(label = "Feature 7: ")
48
+ input_module8 = gr.inputs.Textbox(label = "Feature 8: ")
49
+
50
+ output_module = gr.outputs.Textbox(label = "Predicted housing price: ")
51
+
52
+ gr.Interface(fn=pred,
53
+ inputs=[input_module1,input_module2,input_module3,input_module4,input_module5,input_module6,input_module7,input_module8],
54
+ outputs=output_module).launch()